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Abstract

Emerging applications require the location information of

clients to enable human-environment interactions or personalized

services. With an increasing number of antennas equipped in to-

day’s wireless devices, recent research has shown the possibility

of sub-meter level localization based only on the angle of arrival

(AoA) of WiFi signals. While most existing work provides promis-

ing median accuracy, tail performance is usually far worse. We ob-

serve from measurements that the root cause is unequal AoA es-

timation reliability. In some critical areas, a small variation in the

channel state information of signals could introduce an extremely

largeAoA estimation error.With this observation, we proposeUAT

(Unequal Angle Tracking), a confidence-aware AoA-based localiza-

tion system.We show that unequal reliability of AoAmeasures can

be mathematically quantified, allowing a system to weigh the esti-

mates of different APs according to their confidence. Our testbed

evaluation shows that UAT’s confidence-aware design provides re-

liable decimeter level localization for around 90% of locations. UAT

is especially effective for unreliable areas and can reduce their lo-

calization errors by 27.5%, as compared to reliability-oblivious de-

signs.
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1 Introduction

The demand for accurate indoor localization has been rapidly

increasing. More and more applications now rely on the loca-

tion information to provide location-aware services. For example,
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smart homes, smart factories, augmented reality (AR) and virtual

reality (VR) need the location information of a client to enable

human-environment interactions or control IoT devices adaptively.

Millimeter-wave (mmWave) wireless networks leverage narrow

beams to support multi-gigabit data rates. With the user location

information, the complexity of beam searching can be significantly

reduced. To serve those emerging interactive applications, a local-

ization system that achieves decimeter-level accuracy becomes im-

portant and necessary nowadays.

While today’s devices support an increasing number of anten-

nas, several recent systems [14, 31, 43] have demonstrated the po-

tential of leveraging antenna arrays to enable sub-meter level lo-

calization based on the angle of arrival (AoA) of wireless signals.

Unlike traditional RSSI-based approaches [5, 28, 46], which typi-

cally suffer from signal strength fluctuation, AoA-based systems

exploit the spatial dimension of multiple antennas to extract only

the phase of channel state information (CSI) and, thereby, can be

free from being disturbed by dynamic channel fading.

While existing solutions have shown promising results, those

efforts usually focus on the median accuracy. However, in many of

today’s systems, the 90th percentile of the accuracy can be about

5× worse than the median [14, 43], hindering those systems from

being reliably used in practice. We found that the root cause of this

large tail error is unequal AoA estimation reliability. Our empirical

measurements show that AoA estimation can be accurate in most

locations, but has a considerable error (up to 135 degrees) in some

dead zones. Not only this, the variation of AoA estimation is es-

pecially high when a transmitting client is not static, making AoA

estimation highly uncertain. As most of the existing AoA-based ap-

proaches collect the estimation of multiple APs to determine the

target location, any AP with a large AoA error could bias the lo-

calization result. The goal of this work is hence to quantify the

AoA estimation reliability and develop a system that can avoid be-

ing disturbed by unreliable AoA measures, thereby shrinking the

localization performance gap between the median and the tail.

In this paper, we present UAT (Unequal AoA Tracking), a sys-

tem that enables multiple access points (AP) to perform adaptive

confidence-aware AoA-based localization. While most localization

algorithms aims at improving the accuracy of AoA measurements,

our goal rather is to quantify the confidence level of those AoA

measurements. Hence, UAT can be integrated with any AoA esti-

mation algorithm, e.g., ArrayTrack [43] or SpotFi [14], to enhance

their reliability. UAT is designed based on a key observation that,

while a client may be located in a unreliable area of one AP, it is

very unlikely that its location happens to be within the dead zones

of all the APs. Therefore, if we can adaptively prioritize the APs

based on their confidence levels, we should be able to rule out un-

reliable measurements. By doing this, UAT leverages the diversity

Session 8: Waiting for 7G MobiSys ’19, June 17–21, 2019, Seoul, Korea

444

https://doi.org/10.1145/3307334.3326103
https://doi.org/10.1145/3307334.3326103


of multiple APs to cope with unequal AoA errors and, hence, en-

hance localization reliability.

To realize UAT in practice, however, we should answer a key

question: how can an AP determine the confidence level of an AoA

measure? To do so, we first identify the relationship between an

AoA and the phases of its corresponding CSIs received by multiple

antennas. We observe that, at a very high level, a constant error

in the CSI phase could lead to a very different error in AoA, as

a result making AoA estimation unequally reliable in different ar-

eas. Besides, another source of AoA errors comes from channel dy-

namics. Even slight movement of a client device could make AoA

measures highly variant. The mixture of the two error sources, i.e.,

location-dependent errors and random dynamics, make it hard to

infer AoA uncertainty.

Since it is not easy to directly learn the angle error distribu-

tion from the mixed error sources, we develop a two-phase con-

fidence analysis to infer AoA reliability. We notice that AoA errors

caused by channel variation is a random variable independent of

client locations. However, location-dependent errors introduced

by phase-to-angle conversion are actually deterministic and can

be derived mathematically. To eliminate the impact of user loca-

tions, we hence propose to instead learn the error distribution in

the phase domain and then transform such a phase-domain error

distribution to the angle domain with consideration of phase-to-

angle bias. By such non-linear error transformation, UAT better

captures the real angle error distribution and determines the confi-

dence level of an AP. Then, UAT leverages the inferred reliability of

multiple APs to perform confidence-aware localization. With such

adaptation, UAT prioritizes AoA measures based on their unequal

errors so as to improve localization reliability.

Our work has the following contributions:

• We identify the issue of unequal AoA reliability and conduct

measurement studies to support our observations.

• We mathematically derive location-dependent AoA errors

and infer AoA confidence by a two-phase error distribution

analysis.

• With the estimated AoA confidence, we propose UAT, a

confidence-aware localization system, which detects unreli-

able measures and leverages the diversity of APs to achieve

reliable localization.

• Our experimental results show that UAT reliably provides

decimeter-level localization formost locations. For challeng-

ing locations in the dead zones of some risky APs, UAT re-

duces the error distance by 27.5% as compared to equal AoA

sampling.

As many recent advances [38, 42] have further fused other fea-

tures, e.g., RSSI, ToF and TDoF, to improve localization accuracy,

we believe that our effort on enhancing AoA reliability can be in-

corporated with those fusion systems to improve their tail perfor-

mance.

2 Background and Motivation

We start by introducing the theory of theMUSIC algorithm [30],

one of the most well-known AoA estimation algorithms. We then

explain the potential causes of unequal AoA reliability alone with

empirical measurements that motivate this work.
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(a) Example of LOS AoA (b) Example of AoA Spectrum

Figure 1: AoA Estimation. (a) A signal traverses through parallel paths of

different lengths, resulting in phase differences at antennas. (b) AoA spec-

trum can be learned by MUSIC.

2.1 Primer of AoA Estimation

When a wireless signal X sent by a client traverses through

space, the signal received by a receiving antenna can be expressed

as Yk = HkX+Nk , where Hk is the Channel State Information (CSI)

between the transmitter and the receiver over OFDM subcarrier k

and Nk is the Gaussian white noise. The CSI Hk is determined by

both signal fading and propagation delay over multiple paths the

signal traverses through. If the signal only goes through a single

line-of-sight (LOS) path, then, Hk = αe−2jπ fkt , where α is the re-

ceived signal amplitude, fk is the carrier frequency of subcarrier k

and t is the traversing time along the LOS path.

The angle of an arriving signal can typically be measured by a

uniform linear antenna array based on time difference of arrival.

Say an antenna array is equipped with M antennas, and any two

adjacent antennas are separated by a space d. Assume that the

distance between a transmitter and the receiving antenna array

is much longer than the antenna space d. Then, the signals from

the transmitter to different receiving antennas can be deemed as

traversing along parallel paths. While the signal coming from a

particular angle θ traverses through those parallel paths of differ-

ent lengths, they will arrive at different antennas in slightly dif-

ferent times. In particular, as shown in Fig. 1(a), the distance of a

path arriving from angle θ to the first antenna is slightly shorter

than that to the second antenna. The distance difference equals

d cosθ , which corresponds to an additional signal traversing time

of d cosθ/c, where c is the light speed. Such time differences intro-

duce an additional phase (relative to the first antenna) to each of

the other antennas. As the wavelength λk = c/fk , the array steer-

ing vector ak(θ) can be characterized as a function of the signal’s

incoming angle as follows:

ak(θ) = e−2jπ fkt



1

e−2jπd cosθ/λk

e−2jπ 2d cosθ/λk

...

e−2jπ (M−1)d cosθ/λk



. (1)

In a multipath environment, a signal would traverse through

multiple paths, including the LOS path and other reflected paths.

The signal received by an antenna is hence the linear superposition

of the signals from all the paths, i.e.,

Yk = [ak(θ1) ak(θ2) · · · ak(θL)]



X1
X2
...

XL



+ Nk , (2)
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(a) Transformation from phase difference to AoA
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(b) AoA error caused by a constant phase error

Figure 2: Unequal AoA errors. (a) The phase-to-angle mapping function,

in which a fixed phase error leads to unequal angle errors, as the two red seg-

ments illustrated. (b) The derivative of the phase-to-angle functionquantifies

unequal angle errors caused by a small phase error (in degrees).

where L is the number of paths and ak(θl) is the steering vec-

tor of path l from angle θl over subcarrier k. By equipping with

multiple receiving antennas, we can leverage their spatial dimen-

sions to separate the signals and identify their incoming angles

θl , l = 1, · · · , L. Given Hk across all the subcarriers k, MUSIC [30]

constructs the AoA spectrum of a received signal, as illustrated in

Fig. 1(b). Each point in the spectrum represents the likelihood of

an incoming angle. As the LOS path usually results in the strongest

receiving power, the peak AoA (the angle with the maximal ampli-

tude in the AoA spectrum) is most likely the LOS AoA. Existing

AoA-based localization algorithms then leverage the LOS AoAs of

multiple APs to localize a target client.

2.2 Unequal AoA Error

From Eq. (1), we get that the phase difference between any two

adjacent antennas, denoted by ϕ, caused by a signal coming from

AoA θ is equal to

ϕ=Φ(θ)=∠Hm−∠Hm−1= − 2πd cosθ/λ,m = 2, · · · ,M, (3)

where Φ(θ) is defined as the function that calculates the phase dif-

ference observed by an antenna array for a signal coming from

angle θ . Here we assume that ∠Hm is the phase of the LOS channel

toward antennam. We will explain how to extract this information

in §3.1. Also, for simplicity, we omit the sub-index of subcarrier k

hereafter. By measuring the phase difference ϕ from the CSIs of

different antennas, we can derive the AoA of a path as

θ = Θ(ϕ) = arccos(
∠Hm − ∠Hm−1

−2πd/λ
), (4)

where Θ(ϕ) is similarly defined as the function that transforms the

phase difference between two adjacent antennas ϕ to the incoming

angle θ of a signal. The transformation function is illustrated in
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(a) AoA spectrum as user at 157.5◦ (b) Angle likelihood of (a)

Figure 3: Angle error due to phase wrapping. (a) An exampleAoA spectrum

of user located at 157.5◦ . (b) The likelihood around 0◦ is also high due to phase

wrapping.

Fig. 2(a). If an AP can receive the clean signal without any noise or

phase errors, we can correctly learn the AoA θ when the number of

antennas is sufficiently high for analyzing the AoA spectrum and

eliminating themultipath effect. However, in practice, the received

signal is never perfectly clean. In reality, the CSI is typically dis-

turbed by noise, synchronization errors or hardware imperfection.

Assume that the phase difference measured by an AP is ϕ̃ = ϕ + ϵ ,

where ϕ is the theoretical phase difference and ϵ is a small error

in the measurement. Then, this small error ϵ would introduce an

error to AoA as follows:

θ̃ = Θ(ϕ̃) = arccos(
ϕ + ϵ

−2πd/λ
). (5)

As arccos(·) is not a linear function, a constant error in the phase

difference could introduce unequal angle errors to θ̃ for various

locations, as shown in Fig. 2(a). In particular, the AoA error ∆θ (in

radians) caused by a small phase error ϵ can be found by taking

the following derivative of the transformation function Θ(ϕ):

∆θ =
d

dϕ
Θ(ϕ) =

d

dϕ
arccos(

ϕ

−2πd/λ
) =

λ

2πd

√
1 −

λ2ϕ2

4π 2d2

, (6)

which is illustrated in Fig. 2(b) (in degrees). We can observe from

the figure that a constant phase error leads to a larger angle error

when the true AoA is closer to either 0◦ and 180◦. This phenome-

non is conceptually the same with the theory of beamwidth vari-

ation subject to the same angular resolution in a uniform antenna

array [24], i.e., a smaller 3dB beamwidth for central angles, while

a larger beamwidth for side angles. Due to such unequal errors,

the performance of AoA estimation is inherently more unreliable

when a user is located around the boundary of an AP (i.e., 0◦ or

180◦).

Even worse, since the phase difference is a sinusoidal function,

if any two adjacent antennas are separated by the half wavelength

(d = λ/2), the phase difference between any two adjacent anten-

nas ranges from −π (at 0◦) to π (at 180◦). As the phase difference

in radians is typically wrapped to the interval of [−π , π ], the phase

differences π and −π are actually equivalent after wrapping. For

example, when a client at a location corresponds to a phase close

to π , its phase may be interfered by a small error ϵ such that the

distorted phase π + ϵ will be wrapped to −π + ϵ . That is to say,

such phase wrapping ambiguity makes it difficult to distinguish

between the AoAs of 0◦ and 180◦ and could lead to a huge AoA

error for the boundary area even due to just a small phase error.
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(a) Testbed (b) AoA Error distribution

true AoA 22.5 45 67.5 90 112.5 135 157.5

mean 137.5 9.2 2.0 0.7 2.8 6.0 9.3

std 9.5 1.7 0.7 0.3 0.2 0.3 2.2

(c) Mean and standard deviation of AoA errors

Figure 4: Empirical results of unequal AoA errors. (a) The testbed. (b) The

error distribution of 150 packets in each location, which confirms high un-

certainty in the boundary areas. (c) The boundary areas usually experience a

higher AoA estimation error and a larger standard deviation, implyinghigher

uncertainty.

Note that, if antennas are spaced differently, this wrapping ambi-

guity problem still exists but just in different AoAs. Fig. 3(a) demon-

strates the AoA spectrum of a user locating at around 157.5◦ of an

AP with the antenna space of λ/2. The results show that the am-

plitude of the angles around 0◦ is also large. If the AoA spectrum

is directly used as the angle likelihood, as illustrated in Fig. 3(b), to

locate a user, the localization error for users around the boundary

area would be large due to such phase wrapping.

To verify the above observations, we conduct an experiment us-

ing commodityWiFi cards to measure the AoA errors for different

known user locations toward a fixed AP, as illustrated in Fig. 4(a).

The experiments are performed in a clean environment such that

we can know the ground truth of the LOS AoA of any tested loca-

tion. The AP collects the CSI of 150 packets in each location and

adopts MUSIC to identify the peak AoA over time. Fig. 4(b) plots

the AoA errors of the 150 packets, and Fig. 4(c) summarizes the

mean and standard deviation of AoA errors. The results confirm

that the areas closer to the boundary of an AP usually experience

larger AoA errors. Also, the standard deviation of the boundary

area is much larger than the center area, implying a lower confi-

dence level of AoA measurements. As the number of APs grows,

the likelihood of having an AP covering a user in its boundary

area also increases. Any unreliable measure may offset the benefit

of deploying more APs.

2.3 Variation of AoA Estimation

Another root cause of AoA errors is CSI variation. AoA estima-

tion could be highly accurate when a transmitting client is static,

e.g., laptops on the desk or steadily held smartphones. However,

when a client is moving or even just slightly rotating the transmit-

ting device, the CSIs would vary over time. We empirically com-

pare the variation of AoA measurements when the client is static

(on the desk) and dynamic (held with slight movement). Slight

movement here refers to as a scenario where a user does not move

(e.g., walking, running or driving) but just slightly shakes ormoves
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Figure 5: AoA dynamics. AoA estimates learned by MUSIC vary signifi-

cantly in a dynamic environment. The angle errors can be up to 20.5◦ .
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Figure 6: Framework of UAT. We decompose confidence inference to

location-independent phase distribution analysis and location-dependent

confidence transformation. The confidence levels of multiple APs are then

used to enable reliable localization.

its device. In both scenarios, the client locates at 75◦ of the AP.

The results shown in Fig. 5 demonstrate that, when the device is

static, the AoAs estimated from different packets are quite stable.

However, when the device has even a small movement, the AoA

estimates can fluctuate significantly, as a result making it hard to

use any single packet to locate the client. To achieve reliable local-

ization, we should also consider this variation when inferring AoA

confidence.

3 UAT Design

Wenow elaborate howUAT achieves confidence-aware localiza-

tion. In UAT, multiple APs overhear packets sent by a target client.

The APs then exploit the CSI tool [1][10] to extract the CSIs from

the packets for MUSIC AoA estimation. As AoA uncertainty is de-

termined by two factors, i.e., user location and channel dynamics,

to better capture their impacts, we decouple confidence analysis

to consider the two factors separately. That is, we analyze how the

confidence level is affected by channel dynamics and user locations

separately and integrate their effect for final localization, as illus-

trated in Fig. 6. To be more specific, as phase errors are irrelevant

to user locations, UAT first analyzes the confidence levels of phase

differences to characterize the effect of channel dynamics (§3.1).

Next, UAT transforms the phase-domain confidence values to con-

fidence of angle estimation with consideration of unequal angle

biases (§3.2). Finally, the system leverages the confidence levels of

APs as a hint to localize a target (§3.3).
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3.1 Phase Density Function

To learn AoA reliability, we try to learn the probability density

function of AoAs using sequential packets. As our main goal is to

learn the confidence level of AoAmeasures, we can directly exploit

MUSIC to first learn the AoA measures of sequential packets. MU-

SIC is a standard algorithm that decouples signals from multiple

paths. Hence, we can obtain the initial LOS AoA measures with-

out worrying about the multipath problem1. We then try to train

the probability density function of those LOS AoA measures. In

theory, a narrower density function implies a higher confidence

level. However, as observed in Fig. 2 and Eq. (6), the errors in the

angle domain (i.e., ∆θ) are not linear and may be large in boundary

regions. That is, learning the distribution in the angle domain may

be noisy. Fortunately, the errors in the phase domain (i.e., ϕ) are in-

dependent of user locations. With this observation, we propose to

learn the density function of phase differences, rather than AoAs

itself.

Let N denote the number of packets received by an AP, each

of which outputs the CSIs of M antennas and K subcarriers, i.e.,

Hn = {Hn,m,k : m = 1, · · · ,M, k = 1, · · · ,K , n = 1, · · · ,N }. Note

that our goal is to learn the confidence of the LOS AoA. Hence,

we should learn the phase difference introduced by the LOS path,

instead of the phase difference of the raw CSIs, since the CSI is a

superposition of the channels from multiple paths. To do so, for

each packet n, we first perform AoA spectrum analysis and iden-

tify the peak as the LOS AoA, denoted by θn . The traditional MU-

SIC scheme is built on a narrowband channel and needs multiple

packets to analyze the AoA spectrum. However, as we can now ex-

tract CSI measures frommultiple subcarriers in aWiFi channel, we

adopt the solution similar to [14], which leverages the CSIs of mul-

tiple subcarriers of a wideband channel, to perform AoA spectrum

analysis and extract the LOS AoA. On the other hand, several pre-

vious efforts, e.g., [43] and [14], have investigated how to leverage

a large number of antennas or multiple subcarriers of a wideband

channel to suppress the multipath effect. Those designs can be in-

corporated with our system to refine the accuracy of initial LOS

AoA extraction.

We then collect a set of potential LOS AoAs as A = {θn : 1 ≤

n ≤ N }. To eliminate the location-dependent bias, we transform

the set of potential LOS AoAs to a set of phase differences:

P = {ϕn = −2πd cos(θn)/λ : 1 ≤ n ≤ N }. (7)

By such transformation, we get the phase difference of the LOS

path, instead of that of the raw CSIs.

To learn the reliability of multiple packets, we aim at training

the distribution of the measured LOS phase differences. Intuitively,

if the distribution is more concentrated, it means that most pack-

ets output similar phase measurements, which should be highly

confident estimations. However, if themeasurement from different

packets are spread, we should lower the confidence level for those

estimates. We adopt a statistical technique, called kernel density es-

timation (KDE), to learn the distribution of phase differences. The

main reason we pick KDE is that phase values are cyclic, ranging

between −π and π . For some client locations, the phase differences

1There exist many advanced AoA estimation algorithms proposed recently. We can
alternatively exploit them (instead of MUSIC) to estimate initial LOS AoAs.
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Figure 7: Phase-domain KDE of different locations. (a) A static client

can have very different AoA variation in different locations. (b) The phase-

domain KDE function of two locations however is very similar. The confi-

dence interval (plotted as the colored region) of two locations is hencemostly

the same. (Themarkers ‘+’ on the x-axis are the phase differences correspond-

ing to the AoA samples plotted in (a).)

may fluctuate around −π and π due to phase wrapping. In those

cases, the measured samples could be distributed in two intervals,

one close to −π and the other close to π (see Fig. 11 in §4). KDE is

a non-parametric approach that estimates the probability density

function of a random variable distributed in one or multiple inter-

vals. It leverages an idea similar to histograms, but can characterize

the properties of smoothness and continuity using a suitable ker-

nel function such as triangular, biweight or normal. With this nice

property, we can more accurately learn the distribution of phase

differences of different intervals.

Say the phase differences ϕ1,ϕ2, · · · ,ϕN are i.i.d. univariate ran-

dom samples from some distribution with an unknown density

function fP . Then, the phase-domain kernel density estimator of

fP can be expressed by

f̂P (ϕ) =
1

NB

N∑

n=1

K

(
ϕ − ϕn

B

)
, (8)

where K is the kernel function, which is a non-negative function

that integrates to one, and B is a smoothing parameter called the

bandwidth. In our implementation, we use the normal distribution

as the kernel function K(·) in the phase domain. The trained KDE

function estimates the likelihood of a phase difference, in which

the peak ϕ∗ can be deemed as the most likely phase difference es-

timated from multiple packets. The higher likelihood of the peak

usually comes with less dispersion of the KDE function, meaning

that we have higher confidence in this peak as most of phase dif-

ference samples are close to the peak.
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Figure 8: Phase-domain KDE for static and dynamic scenarios. Even for

the same location, the phase-domain KDE functions for static and dynamic

clients differ a lot. The confidence level of the dynamic case is much lower

than that of the static case. (The markers ‘+’ and ‘o’ on the x-axis are the sam-

ples of phase differences for the static and dynamic case, respectively.)

Fig. 7(a) illustrates the peak AoAs learned from sequential pack-

ets when a user locates at 75◦ and 165◦, respectively. The figure

shows that the AoAs distribute more divergently at 165◦ since the

boundary region typically leads to a larger angle error. However,

when those AoAs are converted back to the phase domain, the

phase difference distributions for the two locations, as illustrated

in Fig. 7(b), are actually quite similar as phase errors are only rel-

evant to CSI variation, which comes from channel dynamics and

hardware imperfection, but is independent of client locations. To

verify this argument, we further convert the AoA distributions of

a static client and a mobile client (i.e., Fig. 5) to their phase differ-

ence distributions, as illustrated in Fig. 8. The results demonstrate

that, even though the client fixes their location in the two cases,

the KDE function indeed becomes dispersed when the CSI varia-

tion increases due to movement. The above motivating examples

show that, as the phase errors are independent of user locations,

statistical dispersion of a phase-domain KDE function can be used

as an indicator to infer confidence of multiple AoA measurements,

regardless of client locations.

To keep only those samples with high enough confidence (i.e.,

likelihood), we leverage thresholding to filter out those mostly un-

likely values in the phase-domain KDE function. For example, we

could use half of the peak likelihood as the threshold to find a con-

fidence interval, as the blue/red regions illustrated in Fig. 7(b) and

Fig. 8. Only those phase differences within the confidence interval

will be considered in the positioning algorithm.With such filtering,

a more dispersed function generates a wider confidence interval,

indicating lower confidence.

3.2 AoA Confidence Estimation

Given the phase-domain density function, we now know the

likelihood of each phase difference, which is mainly determined

by environmental dynamics, instead of user locations. However, as

discussed in §2, since, theoretically, an AP has different confidence

levels of AoA estimation for various areas, a client located in the

boundary region of an AP may get an unreliable AoA estimation.

To learn the confidence of an AP’s AoA estimation, we should now

transform the phase-domain kernel density function f̂P back to the

angle-domain density function f̂A . Since there exists an one-to-

one mapping between a phase difference ϕ and an AoA θ = Θ(ϕ),

as derived in Eq. (4), we can directly define the likelihood of a phase
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(a) Converted AoA PDF (b) AoA PDF after normalization

Figure 9: Angle-domain density function. (a) The density function of the

boundary area (165◦) before normalization becomes wider due to a larger

phase-to-angle error. (b) After normalization, the peak of the density func-

tion for the boundary area drops due to a wider confidence interval, verifying

low confidence of AoA estimation.

difference ϕ as the likelihood of its corresponding AoA θ , i.e.,

fA(θ)=

{
f̂P (Φ(θ))=f̂P (−2πd cos(θ)/λ) ϕmin≤Φ(θ)≤ϕmax

0 otherwise
, (9)

where ϕmin and ϕmax , respectively, are the lower bound and upper

bound of the confidence interval identified from the phase-domain

KDE function. However, after transformation, fA(θ) is still not yet

a probability density function since the integral over the entire

space is not equal to one. We hence further normalize fA (θ) to

get the angle-domain probability density function f̂A (θ).

Fig. 9(a) illustrates the angle-domain functions transformed

from the phase-domain density functions shown in Fig. 7, and

Fig. 9(b) plots the angle-domain probability density functions af-

ter normalization. The figures show that, while the two locations

(at 75◦ and 165◦) have similar phase-domain density functions as

phase errors are independent of locations, they do result in very

different angle-domain density functions since a constant phase er-

ror introduces different angle errors for various client locations. As

a result, the confidence interval after transformation could be en-

larged or shrunk. As shown in Fig. 9, the confidence interval for a

boundary area would become wider due to a larger phase-to-angle

error. Therefore, due to lower confidence and higher variation, the

peak likelihood of AoA in a boundary area (e.g., 165◦) after nor-

malization will also be reduced.

To sum up, though two locations may have the same phase-

domain density function if a client sends packets in a similar con-

dition (static or mobile), they produce different AoA distributions

after phase-to-angle transformation. Hence, by combining KDE

training and phase-to-angle transformation, we can consider chan-

nel variation and unequal angle errors separately and, hence, char-

acterize AoA confidence more accurately.

3.3 Confidence-Aware Localization

Since the APs may have heterogeneous confidence, we propose

a confidence-aware sector-based localization algorithm that com-

bines AoA estimation of multiple APs to localize a client. Let S be

the set ofAPs andωs = [θs,min ,θs,max] denote theAoA-domain con-

fidence interval of AP s ∈ S. Our angle-domain density function

only assigns an angle within ωs a likelihood. That is, AP s believes
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Figure 10: Heatmaps of likelihood estimation. The solid circle is the loca-
tion estimated by UATwhen the client locates in the hollow circle. The client
is in the dead zone of the AP attached to the right wall, which corresponds to
a wider sector (in which each direction is assigned a lower likelihood). The
other APs have a narrow and confident sector.

that the client would locate in any location within the sector of

size |ωs | (i.e., confidence interval).

As mentioned above, an AP has a higher confidence level

(smaller sector size |ω |) if i) its received packets are stable and

ii) its estimated peak AoA is not from a boundary area. A more

confident AP has a narrower sector and assigns a higher likeli-

hood to each potential location within the sector, while a less con-

fident AP contributes a lower weight to each potential location

since it assigns a likelihood to each direction of a larger sector, as

the heatmaps shown in Fig. 10. By doing this, we naturally exploit

the angle-domain density function to prioritize APs based on their

confidence levels.

Given the likelihood estimation of APs, we can compute the like-

lihood of the client being at location x, L(x), by

L(x) =
∏

s=1,· · · ,S

f̂A(θs), (10)

where θs is the angle from the candidate location x to AP s.2 The

target location can be the one with the maximal likelihood, i.e.,

x∗ = argmax L(x), (11)

or, alternatively, the average coordinate of the locations with the

top-K likelihoods. As each AP assigns the likelihood of each loca-

tion based on its confidence, we enable multiple APs to improve

reliability by unequal AoA sampling.

4 Practical Issues

This section discusses several practical issues.

CFO and SFO calibration. As clients and APs are not synchro-

nized, the received signal phase would be affected by both the

carrier frequency offset (CFO) and the sampling frequency offset

(SFO). CFO, defined as f∆ = ftx − frx , occurs because any two ra-

dios typically do not have exactly the same carrier frequency, i.e.,

ftx , frx . Such a difference, even small, would accumulate quickly

over time and add different offsets to different packets. On the

other hand, SFO, denoted by ϵ , is caused by the fact that two radios

may have slightly different sampling intervals Ttx and Trx , respec-

tively. To be specific, though, in theory,WiFi operates at 20MHz (or

40MHz), a transmitter and a receiver use different clocks and may

2In our angle-domain density function, the likelihoods of the locations outside a sec-
tor equal 0, which could make the likelihood multiplication become zero for many
locations. To avoid this, we instead allocate a fairly small likelihood to the locations
outside the sector.
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Figure 11: KDEwrapping. (a)Due to cyclic phase values,KDE

may generate a function with two intervals. (b) We wrap the

KDE function and get its accumulated function within the

range of [−π ,π ].

lead to unequal sampling intervals. The CSI with the additional

phase offsets can be mathematically written as

H ′
m,k (t) = Hm,k (t) ∗ e

−2jπ (fk+f∆)(t+ϵ ), (12)

where H ′
m,k

is the actual CSI measured by antenna m over subcar-

rier k and Hm,k is the ideal CSI over the air. Note that, for a multi-

antenna AP, all the antennas are connected to the same clock and

the same down-converter frequency and, hence, see the same SFO

and CFO. Hence, we instead remove the offsets by simply taking

the phase difference of the CSIs received by any two antennas as

follows:

[1
H ′
2,k

H ′
1,k

H ′
3,k

H ′
1,k

· · ·
H ′
M ,k

H ′
1,k

], (13)

for each subcarrier k = 1, · · · ,K . After such division, the phase

offsets can be canceled out, and ∠
H ′
m,k

H ′
1,k

,m = 2, · · · ,M keeps only

the phase difference caused by link propagation delay required for

AoA estimation.

Initial phase calibration.While the antennas at anAP are tightly

synchronized, they however may start at random initial phases, de-

noted by φm,k for antenna m over subcarrier k, generated by the

phased-locked loop (PLL). Hence, even after CFO and SFO calibra-

tion, there may still be a residual random initial phase as follows:

∠

H ′
m,k

H ′
1,k

= ∠

Hm,k

H1,k
+ ∆φm,k ,m = 2, · · · ,M, k = 1, · · · ,K , (14)

where ∆φm,k = (φm,k − φtx
k
) − (φ1,k − φtx

k
) = φm,k − φ1,k . Note

that this initial random phase difference is a constant no matter

which client is transmitting since the initial phase of a client φtx
k

is canceled out after taking CSI division. Also, this initial phase

difference is independent of user location. With this property, we

propose to leverage a reference location to remove such an offset.

We notice that an AP should receive signals of the same phase at

its multiple antennas if the signal comes from 90◦ (i.e., θ = π/2).

Hence, for a client locating at 90◦, the phase difference remained

in the measured CSI must be the initial phase differences, i.e.,

∠

H
′π /2
m,k

H
′π /2
1,k

≡ ∆φm,k ,m = 2, · · · ,M. (15)
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Figure 12: Prototype. The APs are equipped with Intel 5300

with three antennas. The client uses a commodityWiFi card

equipped with an external antenna.

Thus, when an AP starts operating, we ask the operator to collect

packets at a reference location along 90◦ for the AP to learn its

initial phase differences ∆φm,k . We finally use the following pre-

processed CSIs as the inputs of MUSIC:

[1
H ′
2,k

H ′
1,k

∗e−j∆φ2,k · · ·
H ′
M ,k

H ′
1,k

∗e−j∆φM ,k], k = 1, · · · ,K . (16)

Phase wrapping. Recall that phases are circular and usually

wrapped to a value in between −π and π . If a location creates a

phase difference close to π (or −π ), due to channel variation, the

measured phase differences could distribute in two intervals, one

close to π and the other close to −π , as the triangle markers il-

lustrated in Fig. 7(a). Intuitively, we should wrap the samples in

one interval to the other, e.g., ϕ = ϕ + 2π for those ϕ close to −π .

However, as the channel is noisy and highly variant, phase differ-

ences may be randomly distributed across [−π ,π ], making it not

easy to decide whether to wrap or not. Fortunately, KDE leverages

a concept similar to histograms to learn the distribution. It hence

can output the distribution of two or even more intervals if samples

are distributed into multiple clusters. The curve shown in Fig. 11(a)

illustrates the KDE function learned from the samples in Fig. 7(a)

(triangle markers). This KDE function has two peaks close to −π

and π , respectively. Hence, instead of wrapping the phase differ-

ences of samples, we alternatively wrap the KDE likelihood func-

tion of phase differences, as the dotted lines shown in Fig. 11(b).

After curve wrapping, we get the accumulated KDE function by

transforming the original KDE function into

f̂P (ϕ) =

{
f̂P (ϕ) + f̂P (ϕ−2π ) + f̂P (ϕ+2π ) if − π ≤ ϕ ≤ π

0 otherwise
.

5 Implementation

We deploy aBeing One mini PCs equipped with an off-the-shelf

Intel 5300 WiFi NIC as the APs (receivers), as in Fig. 12(a), and

use Lenovo X200s with Intel 5300 as a transmitting client, as in

Fig. 12(b). All the nodes run Ubuntu Linux of version 14.04.4. The

client and APs operate over channel 120 of the 5GHz WiFi band.

To further extend the bandwidth to 40MHz, we set the HT40- pa-

rameter to bind channels 119 and 120. The client sends packets

continuously with an inter-packet time of 25 ms. We install three

antennas at each AP with spacing of the half wavelength and only

equip one antenna at the client. The APs collect the traces of CSI
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Figure 13: CDFs of AoA errors by MUSIC. While MUSIC pro-

duces accurate estimation for most of client locations, it

however introduces an extremely large error for some criti-

cal locations.

using the 802.11 CSI Tool [10][1] and forward them to a back-end

server, which executes the localization algorithm offline, including

phase calibration, MUSIC and KDE, implemented in C++. In our ex-

perience, KDE training is not that sensitive to the settings of the

bandwidth and the threshold. We hence fix the bandwidth and the

threshold of KDE to 20 and 0.5, respectively, by default.

We run our experiments in two environments, a lobby and a con-

ference room, which are typical rich multipath environments. The

size of the lobby is 10m× 10m, while the size of the meeting room

is about 10m × 6.8m. The lobby is a large open space with people

walking around, while the meeting room is an enclosed space with

objects like chairs and desks. In each environment, four UAT APs

are deployed at the four boundaries of the field. The environments

have ambient WiFi traffic. Unless otherwise stated, we use the CSIs

of 20 packets to localize the target client. Empirically, collecting 20

packets is for balancing the tradeoff between the localization la-

tency and accuracy. Our experiments are conducted in naturally

dynamic environments with users walking through randomly. We

evaluate the performance when the client is either static or mo-

bile in different randomly-selected locations or trials, respectively.

The reported results are the average or CDFs of multiple rounds of

experiments.

6 Results

We evaluate UAT in our testbed. As UAT is a system designed to

quantify the reliability of AoA measures, it can be integrated with

any AoA estimation algorithm, which estimates initial LOS AoA

measures. In this evaluation, we pick ArrayTrack [43] as our ini-

tial AoA estimation algorithm. Hence, we compare our design with

ArrayTrack [43] to check the effectiveness of considering reliabil-

ity of AoA measures in a localization system. We further compare

with a simple intersection scheme, which also uses ArrayTrack to

estimate AoAmeasures but simply identifies the peak AoAs of mul-

tiple APs and finds the intersections of the directional beams along
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Figure 14: Distribution of MUSIC AoA errors. The AoA er-

rors of the locations in the center area are usually small.

However, the locations closer to 0 and 180 degrees get a

larger AoA error, which can be as large as 168.6◦.
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Figure 15: AoA confidence via KDE training. (a) By KDE

training and phase-to-angle transformation, we effectively

enlarge the confidence interval of locations in the boundary

areas. (b) UAT allocates a lower likelihood to AoA estimates

with a larger error.

the peak AoAs of any two APs. It then outputs the average coordi-

nate of those intersections as the target client location. ArrayTrack

is an AoA-based localization system, which does not consider un-

equal angle reliability. It leverages a large number of antennas and

sequential packets to suppress the multi-path effect. As multipath

suppression is out of the scope of this work, we hence exclude

the design of multipath suppression in all the comparison schemes.

Similarly, for fair comparison, we use 3-antenna APs but leverage

the CSIs of multiple subcarriers to enhance AoA spectrum analy-

sis resolution for all the comparison schemes. The experiments are

mainly designed to verify the effectiveness of unequal AoA track-

ing. There have been many recent solutions for improving localiza-

tion resolution, which are not all implemented in our evaluation.

We believe that the benefit of UAT’s confidence-aware design can

further enhance the tail performance of those advanced works.

6.1 Macro Benchmark

MUSIC AoA error. We first check the errors of the peak AoA di-

rectly estimated by MUSIC, instead of our KDE training. We de-

ploy four APs in this experiment and place a dynamic client in

randomly-selected locations. Fig. 13 illustrates the CDFs of the ab-

solute AoA errors for various APs. We can observe from the fig-

ures that, thoughmost of APs can achieve very accurate estimation

for most of locations, they however could introduce an AoA error
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Figure 16: MUSIC angle errors across packets and the peak

AoA in KDE. AoAs estimated by MUSIC could fluctuate

across packets, especially for the boundary areas. UAT char-

acterizes the phase difference distribution more accurately

and, as compared to traditional MUSIC, achieves better ac-

curacy.

larger than 30 degrees for some critical locations. Most of large er-

rors are contributed by the locations belonging to the boundary

area of some APs. If those uncertain estimates are used for localiz-

ing a client, the positioning error would be large.

To dig into the distribution of AoA errors, we further illustrate

in Fig. 14 the scatter plot of the MUSIC AoA errors for various

true angles of client locations. In the scatter plot, we use the size

of markers to represent the percentage of samples that produce

this error. That is, a larger marker means an error happening more

frequently, while a smaller marker denotes a less frequent error.

The results confirm that most of uncertain estimates, though not

frequent, are from those boundary areas, where a small phase er-

ror could lead to a significant angle error. The localization perfor-

mance can be improved if the system can lower the confidence of

an AP for a client located in its dead zones.

KDE AoA estimation. This experiment examines whether KDE

can capture the unequal reliability of AoA estimation. We de-

ploy four APs and move the client to randomly selected locations.

Fig. 15(a) plots the confidence interval of AoA estimates and the

peak AoA estimated by KDE (represented as markers ‘×’) for var-

ious client locations. The results show that, as expected, by limit-

ing the confidence interval of the phase difference distribution and

transforming it to the angle domain, we obtain different sizes of

the angle confidence intervals for various locations. The locations

closer to the boundary area have a larger confidence interval, im-

plying a lower likelihood and thereby a lower weight assigned to

those estimates. By contrast, the confidence intervals of central lo-

cations aremuch smaller. Hence, the angle estimates of the packets

from the center area have a higher likelihood,which reflects higher

confidence for localization. On the other hand, we can observe that

those confidence intervals can mostly cover the true angle of client

locations, i.e., the dashed line with the slope of 1. It indicates that

UAT adapts the size of the confidence interval suitably to filter out

the measures far from the ground truth.

We next verify whether KDE training can capture AoA estima-

tion confidence correctly. Intuitively, for reliable localization, an

AoA estimate with a larger error should be allocated a smaller

likelihood. To confirm this, in Fig. 15(b), we plot the relationship
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Figure 17: Localization errors in the static scenario. When

the client is completely static, the CSIs of packets are fairly

static. ArrayTrack hence performs comparable to our UAT,

except for some critical locations belonging to the boundary

area.

between the estimation error of the peak AoA of the KDE func-

tion and its assigned likelihood. It can be observed that, for those

AoA estimates with an error smaller than 20 degrees, UAT usu-

ally allocates those samples a high likelihood, which means that

those samples can be effectively used to localize a client. How-

ever, for other AoA estimates corresponding to a larger error (e.g.,

larger than 30 degrees), UAT’s KDE identifies their uncertainty and

lowers their likelihood such that those unreliable measures would

less likely bias the localization decision. This figure shows that

KDE correctly characterizes AoA reliability, allowing us to enable

confidence-aware localization.

We then check how well KDE performs in different areas.

Fig. 16(a) plots the LOS AoAs of 20 packets estimated by conven-

tional MUSIC in three locations of the center area, along 83, 99 and

126 degrees of an AP, respectively. The results show that the AoA

estimates of the locations in the center area are fairly stable. We

then plot the peak learned by KDE as the dashed horizontal lines,

which can be very close to the ground truth AoA. Fig. 16(b), how-

ever, shows that the estimated AoAs of 20 packets in three loca-

tions of the boundary area, along 10, 145 and 170 degrees of an AP,

respectively, are spread due to a higher phase-to-angle error. If we

simply learn the angle distribution from those samples, we may

get a peak far from the true angle. For example, for the location

at 10 degrees in Fig. 16(b), the measures are distributed between

0 and 30 degrees. Simply learning the distribution of those AoAs

may output a peak far from the ground truth. However, UAT’s KDE

accurately learns the distribution in the phase domain, which is lo-

cation independent, and is able to find an accurate peak angle after

phase-to-angle transformation.

6.2 Performance Comparison

We next compare the localization performance of UAT with the

comparison schemes in the static, dynamic and mobile scenarios,
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Figure 18: Localization errors in the dynamic scenario.

When the client has subtle movement, the CSIs could fluc-

tuate slightly. UAT’s KDE infers AoA reliability and reduces

localization errors.

respectively. In this experiment, we will show the localization ac-

curacy of all the possible locations (instead of only those in the

boundary areas) in order to demonstrate the benefit of UAT espe-

cially for risky locations.

Static scenario. In this experiment, we configure four APs at-

tached to the four walls in the testbed. A client is statically de-

ployed in 50 randomly-selected locations. For each location, we

let the client send 20 packets for the APs to learn the phase dif-

ference distribution based on KDE. The server then calculates the

AoA density function of the APs and performs confidence-aware

localization.

Figs. 17(a) and 17(b) plot the CDFs of the localization errors

in the lobby and conference room, respectively. The intersection

scheme only uses the peak AoA but does not consider estimation

likelihood. It hence introduces a larger AoA error, which in turn

worsens localization accuracy. The results also show that, when

the client is static, the CSIs are relatively stable. Hence, even with-

out leveraging confidence inference, ArrayTrack can achieve a per-

formance similar to UAT in most of locations. The main reason is

that, as a location is within the safe area of all the neighboring APs,

the system can obtain a fairly good localization results even if it

does not explicitly consider the confidence level of AoA measures.

However, we can still observe from the figures that UAT achieves a

smaller localization error than ArrayTrack in some challenging lo-

cations, where some APs may create a larger AoA estimation error.

Specifically, in UAT, 90% of locations can achieve sub-meter level

accuracy, while, in ArrayTrack, only 80% of locations get an error

less than 1 m in the conference room. This verifies the benefit of

UAT’s reliability-aware design for tail performance enhancement.

Dynamic scenario. We also perform the same experiment, but

ask the client to hold the device with subtle movement. The pur-

pose of this experiment is to check how the variation of CSI

caused by device movement affects the localization performance.

We again compare the CDFs of the localization errors of different
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Figure 19: Localization errors in different areas. UAT adapts

the confidence levels of APs and is especially effective for

the locations covered by more risky APs.
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Figure 20: Localization errors in the mobile scenario. CSI

variation becomes larger in the mobile scenario. By KDE

training, UAT filters out unreliable CSIs and produces a lo-

calization error smaller than 2 m for most of locations.

schemes in the lobby and conference room, respectively, as shown

in Figs. 18(a) and 18(b). The results show that, as now the CSI

is more noisy, ArrayTrack does not prioritize AoA measures and

hence produces a larger error. However, UAT learns the AoA den-

sity function based on KDE. It can hence filter out some unreliable

measures and obtain an AoA density function that is more likely to

cover the true AoA. Comparing to the results in the static scenario

(Fig. 17), UAT benefits more from considering AoA variation and

reduces the 75-percentile error from 0.96 m to 0.77 m. Also, UAT

is especially effective for challenging locations. The 90-percentile

localization error can be reduced by 27.5% and 62.1% as compared

to ArrayTrack and Intersection, respectively.

Impact of unequal reliability. To take a closer look at where

the improvement comes from, we classify the client locations into

three groups: 0, 1 and 2 risky APs. A risky APmeans that the client

location is within the boundary area of this AP. As there exists no

clear boundary of risky area, in our experiments, we define the

range of [0, 45] and [135, 180] degrees as the boundary area of an

AP. Hence, a client location has i risky APs if it locates within the

boundary area of i APs. A location corresponding to more risky

APs usually gets a larger localization error due to unequal AoA

reliability.

We illustrate the median error of the three groups in Figs. 19(a)

and 19(b) for the static and dynamic scenarios, respectively. The

results show that, in general, a location experiences a higher local-

ization error if it is covered by more risky APs due to unreliable

AoA estimation, verifying our motivation. For the group with no

risky AP (i.e., locating in the safe area of all the APs), UAT actually

performs similar to ArrayTrack since they essentially both follow
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Figure 21: Impact of number of APs. A client is more likely

to be covered by an unreliable AP when there are more

APs. UAT identifies those unreliable measurements and ef-

fectively exploits multiple APs to enhance localization accu-

racy.

MUSIC. However, themore risky APs covering a location, themore

enhancement UAT can achieve, showing the effectiveness of our

confidence-aware localization. Though the risky area in our defi-

nition is wide, UAT reduces the median localization error by 23.2%

and 14.3% for the static and dynamic scenarios, respectively, when

a location belongs to the boundary area of two risky APs. The im-

provement is in fact more significant for users located closer to 0

and 180 degrees of a risky AP.

Mobile scenario. In this experiment, we ask the client to walk

along a straight line toward a randomly selected direction. We try

two walking speeds, around 0.5 m/s and 1 m/s, respectively. For

each walking speed, we repeat the experiment 10 times. As it is

harder to obtain the ground truth location during mobility, we tag

the ground truth locations of the beginning and ending points of

a trajectory and assume that the client walks at a constant speed.

The ground truth location during walking is then estimated by in-

terpolation.

Fig. 20 compares the CDFs of localization errors of UAT and Ar-

rayTrack during walking. The results show that the errors become

larger when the walking speed increases, since the CSI variation

gets larger when the client has higher mobility. Hence, the phase

estimates of different packets may differ a lot, leading to lower re-

liability. However, UAT leverages multiple packets to find a phase

distributionfitting the ideal phase difference and, hence, is more re-

sistant to randomnoise. As compared toArrayTrack, we reduce the

median localization error from 0.82 m to 0.75 m. For challenging

locations, we can improve the accuracy significantly and reduce

the 90-percentile localization error by 28.4%.

Impact of number of APs. We finally evaluate the impact of

the number of APs. In this experiment, we ask a dynamic client

to stand in 50 randomly-selected locations, and vary the number

of APs from 2 to 4. We first show the CDFs of the maximal AoA

error among all the APs for conventional MUSIC and our KDE in
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Fig. 21(a). The figure shows that, when the number of APs grows,

a client is more likely to be located in the boundary area of an AP,

leading to a large AoA error. UAT’s KDE scheme considers the dis-

tribution of multiple measurements and, thereby, reduces the max-

imal AoA error effectively. Fig. 21(b) then plots the CDFs of the lo-

calization errors of UAT and ArrayTrack, respectively. The results

show that the CSIs of packets could fluctuate slightly and lower the

confidence level of each AP. Installing the fourth AP, thus, helps

further improve confidence of AoA estimation and decrease the fi-

nal localization error. More importantly, as the probability of being

covered by an unreliable AP increases as there are more APs, the

gain of UAT over ArrayTrack gets higher when there are more APs

deployed.

To summarize, we experimentally verify that AoAmeasures are

vulnerable in the boundary areas and mobile scenarios. Our KDE-

based estimation effectively learns the distribution of AoA mea-

sures and more reliably identifies the peak AoA for localization.

With consideration of the AoA confidence level, UAT improves the

tail location performance and allows 90% of locations to obtain sub-

meter level accuracy.

7 Related Work

We classify related work into the following categories:

RSSI-based localization. Earlier studies [4–7, 11, 18, 19, 25, 28,

40, 44, 46, 48] mainly rely on the received signal strength indica-

tor (RSSI) information to localize a target client. The RSSI-based

approaches can further be divided into the fingerprinting-based

method [5, 46] and the model-based method [4, 5, 28]. Some later

work further fuses other techniques, e.g., acoustic signal [19, 22]

or particle filtering [27], to improve positioning accuracy. The lim-

itation of RSSI-based systems is that RSSI measures are highly vari-

ant, whichmakes the localization result highly uncertain. Recently,

some systems, e.g., [32, 41, 45], further leverage CSI to minimize

uncertainty and improve accuracy.

ToF-based localization. This type of localization systems calcu-

lates time-of-flight (ToF) of an LOS link and estimates the link

distance accordingly [3, 9, 13, 16, 20, 21, 35, 36, 47]. As the band-

width of WiFi is small, it is unlikely to obtain a sufficient resolu-

tion of ToF for WiFi-based localization. To address this limitation,

WiTrack [3][2] instead uses low-power FMCW radar across 1.69

GHz of frequency bands to perform fine-grained ToF estimation.

Chronos [35] then exploits a frequency-hopping technique to ex-

plore the entire WiFi frequency bands crossing from 2.4GHz to

5GHz. However, the frequency-hopping scheme requires clients

to frequently switch among different channels, which may hinder

normal data transmissions and could also introduce significant in-

terfering signals to environments.

AoA-based localization. Some systems utilize antenna arrays to

calculate the AoA of a target client [8, 12, 14, 15, 17, 23, 26, 29, 31,

33, 37, 39, 43]. With the development of MIMO technologies and

the release of the CSI tool [1][10], AoA-based approaches become

more and more popular because of its better accuracy. In Array-

Track [43], 8-antenna antenna arrays are built using the WARP

boards to implement the MUSIC algorithm. CUPID [31] utilizes

commodity WiFi cards to estimate AoAs but jointly leverage dis-

tance estimation to refine localize accuracy. SpotFi [14] aims at

combating the limited number of antennas in commodity WiFi

chipsets by a super-resolution algorithm. Some research [15, 37]

even uses synthetic aperture radar (SAR) to simulate an antenna

array using only a small number of antennas. The aforementioned

work does not explicitly consider unequal AoA reliability in local-

ization. Hence, the localization results for the dead zones would

be vulnerable. Though ArrayTrack mentions a lower reliability for

the areas around 0◦ and 180◦, it neither studies this phenomenon

nor gives any solutions to it. The unequal reliability problem may

be bypassed by using circular antenna arrays [34, 49]. However,

circular arrays usually require special deployment and still suffer

from unequal reliability in the z-axis. Our work demystifies the

roots causing unequal AoA reliability and proposes a confidence-

aware localization algorithm to tackle this problem and enhance

the tail performance.

8 Conclusion and Future Directions

This paper introduces UAT, an AoA-based localization system

that addresses the unequal reliability issue. We first conduct exten-

sive measurement studies to characterize AoA estimation reliabil-

ity and identify the root causes of unreliable AoA estimation. This

work is the first that qualifies the reliability of AoA estimates with

consideration of location-dependent phase-to-angle transforma-

tion errors. We then develop a confidence-aware localization sys-

tem, UAT, which leverages phase-domain KDE and phase-to-angle

transformation to enable sector-based localization. By confidence-

aware sector size adaptation, UAT allows multiple APs to weigh

their decisions automatically and produce highly-confident local-

ization results. Our prototype implementation shows that consider-

ing unequal AoA reliability prevents risky APs from biasing the lo-

calization result. By UAT’s adaptive sector-based localization, the

median localization error of the risky area can be reduced by 23.2%

and 14.3% for the static and dynamic scenarios, respectively, as

compared to reliability-oblivious localization.

This work focuses on prioritizing AoA measurements based on

their confidence levels for a givenWiFi infrastructure. Some partic-

ular dead spots may still be poorly localized if they are within the

risky areas of all the neighboring APs. To further avoid the dead

spot problem, one can optimize the deployment of APs such that

any location can be covered by a sufficient number of reliable APs.

We leave investigating this issue for future research.
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