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ABSTRACT | With the breakthroughs in deep learning,
the recent years have witnessed a booming of artificial intel-
ligence (Al) applications and services, spanning from personal
assistant to recommendation systems to video/audio surveil-
lance. More recently, with the proliferation of mobile comput-
ing and Internet of Things (loT), billions of mobile and loT
devices are connected to the Internet, generating zillions bytes
of data at the network edge. Driving by this trend, there is an
urgent need to push the Al frontiers to the network edge so as
to fully unleash the potential of the edge big data. To meet this
demand, edge computing, an emerging paradigm that pushes
computing tasks and services from the network core to the
network edge, has been widely recognized as a promising solu-
tion. The resulted new interdiscipline, edge Al or edge intelli-
gence (El), is beginning to receive a tremendous amount of
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interest. However, research on El is still in its infancy stage, and
a dedicated venue for exchanging the recent advances of El is
highly desired by both the computer system and Al communi-
ties. To this end, we conduct a comprehensive survey of the
recent research efforts on El. Specifically, we first review the
background and motivation for Al running at the network edge.
We then provide an overview of the overarching architectures,
frameworks, and emerging key technologies for deep learning
model toward training/inference at the network edge. Finally,
we discuss future research opportunities on El. We believe that
this survey will elicit escalating attentions, stimulate fruitful
discussions, and inspire further research ideas on El.

KEYWORDS | Artificial intelligence, deep learning, edge com-
puting, edge intelligence.

I. INTRODUCTION

We are living in an unprecedented booming era of arti-
ficial intelligence (AI). Driving by the recent advance-
ments of algorithm, computing power, and big data,
deep learning [1]—the most dazzling sector of Al—has
made substantial breakthroughs in a wide spectrum of
fields, ranging from computer vision, speech recognition,
and natural language processing to chess playing (e.g.,
AlphaGo) and robotics [2]. Benefiting from these break-
throughs, a set of intelligent applications, as exemplified by
intelligent personal assistants, personalized shopping rec-
ommendation, video surveillance, and smart home appli-
ances have quickly ascended to the spotlight and gained
enormous popularity. It is widely recognized that these
intelligent applications are significantly enriching people’s
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lifestyle, improving human productivity, and enhancing
social efficiency.

As a key driver that boosts Al development, big data
have recently gone through a radical shift of data source
from the megascale cloud datacenters to the increasingly
widespread end devices, e.g., mobile devices and Internet-
of-Things (IoT) devices. Traditionally, big data, such as
online shopping records, social media contents, and busi-
ness informatics, were mainly born and stored at megas-
cale datacenters. However, with the proliferation of mobile
computing and IoT, the trend is reversing now. Specifically,
Cisco estimates that nearly 850 ZB will be generated by
all people, machines, and things at the network edge by
2021 [3]. In sharp contrast, the global datacenter traffic
will only reach 20.6 ZB by 2021. Clearly, via bringing
the huge volumes of data to Al, the edge ecosystem will
present many novel application scenarios for Al and fuel
the continuous booming of Al

Pushing the AI frontier to the edge ecosystem that
resides at the last mile of the Internet, however, is highly
nontrivial, due to the concerns on performance, cost, and
privacy. Toward this goal, the conventional wisdom is to
transport the data bulks from the IoT devices to the cloud
datacenters for analytics [4]. However, when moving a
tremendous amount of data across the wide area network
(WAN), both monetary cost and transmission delay can
be prohibitively high, and the privacy leakage can also be
a major concern [5]. An alternative is on-device analytics
that run Al applications on the device to process the IoT
data locally, which, however, may suffer from poor perfor-
mance and energy efficiency. This is because many Al appli-
cations require high computational power that greatly out-
weighs the capacity of resource- and energy-constrained
IoT devices.

To address the above-mentioned challenges, edge
computing [6] has recently been proposed, which pushes
cloud services from the network core to the network
edges that are in closer proximity to IoT devices and
data sources. As shown in Fig. 1, here an edge node
can be nearby end-device connectable by device-to-device
(D2D) communications [7], a server attached to an access
point (e.g., WiFi, router, and base station), a network
gateway, or even a microdatacenter available for use by
nearby devices. While edge nodes can be varied in size:
ranging from a credit-card-sized computer to a micro-
datacenter with several server racks, physical proximity
to the information-generation sources is the most cru-
cial characteristic emphasized by edge computing. Essen-
tially, the physical proximity between the computing and
information-generation sources promises several benefits
compared to the traditional cloud-based computing par-
adigm, including low latency, energy efficiency, privacy
protection, reduced bandwidth consumption, on-premises,
and context awareness [6], [8].

Indeed, the marriage of edge computing and AI has
given rise to a new research area, namely, “edge intel-
ligence (ED)” or “edge AI” [9], [10]. Instead of entirely
relying on the cloud, EI makes the most of the widespread
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Fig. 1. IHlustration of edge computing.

edge resources to gain Al insight. Notably, EI has garnered
much attention from both the industry and academia. For
example, the celebrated Gartner hype cycle has incor-
porated EI as an emerging technology that will reach
a plateau of productivity in the following five to ten
years [11]. Major enterprises, including Google, Microsoft,
Intel, and IBM, have put forth pilot projects to demonstrate
the advantages of edge computing in paving the last mile
of Al. These efforts have boosted a wide spectrum of
Al applications, spanning from live video analytics [12],
cognitive assistance [13] to precision agriculture, smart
home [14], and Industrial Internet of Things (IIoT) [15].

Notably, research and practice on this emerging
interdiscipline—EI—are still in a very early stage. There
is, in general, a lack of venue dedicated for summarizing,
discussing, and disseminating the recent advances of EI,
in both industrial and academia. To bridge this gap, in this
paper, we conduct a comprehensive and concrete survey
of the recent research efforts on EI. Specifically, we will
first review the background of Al. We will then discuss
the motivation, definition, and rating of EI. Next, we will
further review and taxonomically summarize the emerging
computing architectures and enabling technologies for EI
model training and inference. Finally, we will discuss some
open research challenges and opportunities for EI. This
paper is organized as follows.

1) Section II gives an overview of the basic concepts of
Al, with a focus on deep learning—the most popular
sector of Al.

2) Section III discusses the motivation, definition, and
rating of EL

3) Section IV reviews the architectures, enabling tech-

niques, systems, and frameworks for training EI
models.

4) Section V reviews the architectures, enabling
techniques, systems, and frameworks for EI model
inference.

5) Section VI discusses future directions and challenges
of EL

For this survey, we hope it can elicit escalating atten-
tions, stimulate fruitful discussions, and inspire further
research ideas on EI.

Vol. 107, No. 8, August 2019 | PROCEEDINGS OF THE IEEE 1739



Zhou et al.: Edge Intelligence Paving the Last Mile of Artificial Intelligence With Edge Computing

II. PRIMER ON ARTIFICIAL
INTELLIGENCE

In this section, we review the concepts, models, and meth-
ods for Al, with a particular focus on deep learning—the
most popular sector of Al

A. Artificial Intelligence

While AI has recently ascended to the spotlight and
gained tremendous attention, it is not a new term and it
was first coined in 1956. Simply put, Al is an approach
to build intelligent machines capable of carrying out tasks
as humans do. This is obviously a very broad definition,
and it can refer from Apple Siri to Google AlphaGo and
too powerful technologies yet to be invented. In simu-
lating human intelligence, Al systems typically demon-
strate at least some of the following behaviors associated
with human intelligence: planning, learning, reasoning,
problem-solving, knowledge representation, perception,
motion, and manipulation and, to a lesser extent, social
intelligence, and creativity. During the past 60 year’s devel-
opment, Al has experienced rise, fall, and again rise and
fall. The latest rise of Al after 2010s was partially due to the
breakthroughs made by deep learning, a method that has
achieved human-level accuracy in some interesting areas.

B. Deep Learning and Deep Neural Networks

Machine learning (ML) is an effective method to achieve
the goal of Al. Many ML methodologies as exemplified
by decision tree, K-means clustering, and Bayesian net-
work have been developed to train the machine to make
classifications and predictions, based on the data obtained
from the real world. Among the existing ML methods,
deep learning, by leveraging artificial neural networks
(ANNs) [16] to learn the deep representation of the data,
has resulted in an amazing performance in multiple tasks,
including image classification, face recognition, and so on.
Since the ANN adopted by deep learning model typically
consists of a series of layers, the model is called a deep
neural network (DNN). As shown in Fig. 2, each layer of a
DNN is composed of neurons that are able to generate the
nonlinear outputs based on the data from the input of the
neuron.

The neurons in the input layer receive the data and prop-
agate them to the middle layer (also known as the hidden
layer). Then, the neurons in the middle layer generate the
weighted sums of the input data and output the weighted
sums using the specific activation functions (e.g., tanh),
and the outputs are then propagated to the output layer.
The final results are presented at the output layer. With
more complex and abstract layers than a typical model,
DNNs are able to learn the high-level features, enabling
high precision inference in tasks. Fig. 3 presents three pop-
ular structures of DNNs: multilayer perceptrons (MLPs),
convolution neural networks (CNNs), and recurrent neural
networks (RNNs).
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MLP models are the most basic DNN, which is com-
posed of a series of fully connected layers [17]. Different
from fully connected layers in MLPs, in CNN models,
the convolution layers extract the simple features from
input by executing convolution operations. Applying var-
ious convolutional filters, CNN models can capture the
high-level representation of the input data, making it most
popular for computer vision tasks, e.g., image classifica-
tion (e.g., AlexNet [18], VGG network [19], ResNet [20],
and MobileNet [21]) and object detection (e.g., Fast
R-CNN [22], YOLO [23], and SSD [24]). RNN models are
another type of DNNs, which use sequential data feeding.
As shown in Fig. 3(c), the basic unit of RNN is called cell,
and further, each cell consists of layers and a series of cells
enables the sequential processing of RNN models. RNN
models are widely used in the task of natural language
processing, e.g., language modeling, machine translation,
question answering, and document classification.

Deep learning represents the state-of-the-art Al tech-
nology as well as a highly resource-demanding work-
load that naturally suits for edge computing. Therefore,
due to space limitation, in the remaining of this paper,
we will focus on the interaction between deep learning and
edge computing. We believe that the techniques discussed
can also have meaningful implications for other Al mod-
els and methods, i.e., stochastic gradient descent (SGD)
is a popular training method for many AI/ML algo-
rithms (e.g., k-means, support vector machine, and lasso
regression) [25], and the optimization techniques of SGD
training introduced in this paper can be also deployed on
other Al models training process.

C. From Deep Learning to Model Training and
Inference

For each neuron in a DNN layer, it has a vector of
weights associated with the input data size of the layer.
Needless to say, the weights in a deep learning model need
to be optimized through a training process.

In a training process for a deep learning model, the val-
ues of weights in the model are often randomly assigned
initially. Then, the output of the last layer represents the
task result, and a loss function is set to evaluate the
correctness of the results by calculating the error rate (e.g.,
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root-mean-squared error) between the results and the true
label. To adjust the weights of each neuron in the model,
an optimization algorithm, such as SGD [25], is used and
the gradient of the loss function is calculated. Leveraging
the backpropagation mechanism [26], [27], the error rate
is propagated back across the whole neural network, and
the weights are updated based on the gradient and the
learning rate. By feeding a large number of training sam-
ples and repeating this process until the error rate is below
a predefined threshold, a deep learning model with high
precision is obtained.

DNN model inference happens after training. For
instance, for an image classification task, with the feed-
ing of a large number of training samples, the DNN is
trained to learn how to recognize an image, and then,
inference takes real-world images as inputs and quickly
draws the predictions/classifications of them. The training
procedure consists of the feed-forward process and the
backpropagation process. Note that the inference involves
the feedforward process only, i.e., the input from the real
world is passed through the whole neural network and the
model outputs the prediction.

D. Popular Deep Learning Models

For a better understanding of the deep learning and their
applications, in this section, we give an overview of various
popular deep learning models.

1) Convolution Neural Network: For image classifica-
tion, as the first CNN to win the ImageNet Challenge in
2012, AlexNet [18] consists of five convolution layers and

three fully connected layers. AlexNet requires 61 million
weights and 724 million MACs (multiply-add computa-
tion) to classify the image with a size of 227 x 227.
To achieve higher accuracy, VGG-16 [19] is trained to a
deeper structure of 16 layers consisting of 13 convolution
layers and three fully connected layers, requiring 138 mil-
lion weights and 15.5G MAGCs to classify the image with a
size of 224 x 224. To improve accuracy while reducing the
computation of DNN inference, GoogleNet [28] introduces
an inception module composed of different sized filters.
GoogleNet achieves a better accuracy performance than
VGG-16, while only requiring seven million weights and
1.43G MACs to process the image with the same size.
ResNet [20], the state-of-the-art effort, uses the “shortcut”
structure to reach a human-level accuracy with a top-5
error rate below 5%. The “shortcut” module is used to
solve the gradient vanishing problem during the training
process, making it possible to train a DNN model with
deeper structure. CNN is typically employed in computer
vision. Given a series of images or video from the real
world, with the utilization of CNN, the Al system learns
to automatically extract the features of these inputs to
complete a specific task, e.g., image classification, face
authentication, and image semantic segmentation.

2) Recurrent Neural Network: For sequential input data,
RNNs have been developed to address the time-series
problem. The input of RNN consists of the current input
and the previous samples. Each neuron in an RNN owns
an internal memory that keeps the information of the com-
putation from the previous samples. The training of RNN
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is based on backpropagation through time (BPTT) [29].
Long short-term memory (LSTM) [30] is an extended ver-
sion of RNNs. In LSTM, the gate is used to represents the
basic unit of a neuron. As shown in Fig. 4, each neuron in
LSTM is called memory cell and includes a multiplicative
forget gate, input gate, and output gate. These gates are
used to control the access to memory cells and to prevent
them from perturbation by irrelevant inputs. Information
is added or removed through the gate to the memory
cell. Gates are different neural networks that determine
what information is allowed on the memory cell. The
forget gate can learn what information is kept or forgotten
during training. RNN has been widely used in natural
language processing due to the superiority of processing
the data with an input length that is not fixed. The task
of the AI here is to build a system that can comprehend
natural language spoken by humans, e.g., natural language
modeling, word embedding, and machine translation.

3) Generative Adversarial Network: As shown in Fig. 5,
generative adversarial networks (GANs) [31] consists of
two main components, namely, the generative and discrim-
inator networks (i.e., generator and discriminator). The
generator is responsible for generating new data after it
learns the data distribution from a training data set of real
data. The discriminator is in charge of classifying the real
data from the fake data generated by the generator. GAN
is often deployed in image generation, image transforma-
tion, image synthesis, image superresolution, and other
applications.

4) Deep Reinforcement Learning: Deep reinforcement
learning (DRL) is composed of DNNs and RL. As illustrated
in Fig. 6, the goal of DRL is to create an intelligent agent
that can perform efficient policies to maximize the rewards
of long-term tasks with controllable actions. The typical
application of DRL is to solve various scheduling problems,
such as decision problems in games, rate selection of video
transmission, and so on.

In the DRL approach, the RL searches for the optimal
policy of actions over states from the environment, and
the DNN is in charge of representing a large number of
states and approximating the action values to estimate the
quality of the action in the given states. The reward is a
function to represent the distance between the predefined
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requirement and the performance of an action. Through
continuous learning, the agent of DRL model can be used
for various tasks, e.g., gaming [32].

IIl. EDGE INTELLIGENCE

The marriage of edge computing and Al gives the birth of
EI In this section, we discuss the motivation, benefits, and
definition of EI.

A. Motivation and Benefits of Edge Intelligence

The fusion of Al and edge computing is natural since
there is a clear intersection between them. Specifically,
edge computing aims at coordinating a multitude of collab-
orative edge devices and servers to process the generated
data in proximity, and Al strives for simulating intelligent
human behavior in devices/machines by learning from
data. Besides enjoying the general benefits of edge com-
puting (e.g., low latency and reduced bandwidth consump-
tion), pushing Al to the edge further benefits each other in
the following aspects.

1) Data Generated at the Network Edge Need Al to Fully
Unlock Their Potential: As a result of the proliferation of the
skyrocketing number and types of mobile and IoT devices,
large volumes of multimodal data (e.g., audio, picture, and
video) of physical surroundings are continuously sensed at
the device side. In this context, Al will be functionally nec-
essary due to its ability to quickly analyze those huge data

Agent

Action
Reward

State Environment

Fig. 6. Concept of a DRL model.
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volumes and extract insights from them for high-quality
decision making. As one of the most popular Al techniques,
deep learning brings the ability to automatically identify
patterns and detect anomalies in the data sensed by the
edge device, as exemplified by population distribution,
traffic flow, humidity, temperature, pressure, and air qual-
ity. The insights extracted from the sensed data are then
fed to the real-time predictive decision-making (e.g., public
transportation planning, traffic control, and driving alert)
in response to the fast-changing environments, increasing
the operational efficiency. As forecast by Gartner [33],
more than 80% of enterprise IoT projects will include an
Al component by 2022, up from only 10% today.

2) Edge Computing Is Able to Prosper Al With Richer Data
and Application Scenarios: It is widely recognized that the
driving force behind the recent booming of deep learning
is fourfold: algorithm, hardware, data, and application
scenarios. While the effect of algorithm and hardware on
the development of deep learning is intuitive, the role
of data and application scenarios has been mostly over-
looked. Specifically, to improve the performance of a deep
learning algorithm, the most commonly adopted approach
is to refine the DNN with more layers of neurons. By doing
this, we need to learn more parameters in the DNN and so
does the data required for training increase. This definitely
demonstrates the importance of data on the development
of Al. Having recognized the importance of data, the next
problem is where are the data from. Traditionally, data
are mostly born and stored in the megascale datacenters.
Nevertheless, with the rapid development of IoT, the trend
is reversing now. According to Cisco’s report [3], in the
near future, massive IoT data will be generated at the
edge side. If these data are processed by Al algorithms at
the cloud data center, it will consume a lot of bandwidth
resources and bring great pressure to the cloud data center.
To address these challenges, edge computing is proposed
to achieve low-latency data processing by sinking the
computing capability from the cloud data center to the
edge side, i.e., data generation source, which may enable
Al processing with high performance.

While edge computing and Al complement each other
from a technical perspective, their application and popu-
larization are also mutually beneficial.

3) AI Democratization Requires Edge Computing as a Key
Infrastructure: Al technologies have witnessed great suc-
cess in many digital products or services in our daily
life, e.g., online shopping, service recommendation, video
surveillance, smart home devices, and so on. Al is also
a key driving force behind emerging innovative frontiers,
such as self-driving cars, intelligent finance, cancer diagno-
sis, and medicine discovery. Beyond the above-mentioned
examples, to enable a richer set of applications and push
the boundaries of what is possible, Al democratization
or ubiquitous AI [34] has been declared by major IT
companies, with the vision of “making Al for every per-
son and every organization at everywhere.” To this end,

Al should go “closer” to the people, data, and end devices.
Clearly, edge computing is more competent than cloud
computing in achieving this goal. First, compared to the
cloud datacenter, edge servers are in closer proximity to
people, data source, and devices. Second, compared to
cloud computing, edge computing is also more affordable
and accessible. Finally, edge computing has the potential to
provide more diverse application scenarios of Al than cloud
computing. Due to these advantages, edge computing is
naturally a key enabler for ubiquitous Al

4) Edge Computing Can Be Popularized With AI Applica-
tions: During the early development of edge computing,
there has always been the concern in the cloud com-
puting community with which high-demand applications
edge computing could take to the next level that cloud
computing could not, and what are the killer applications
of edge computing. To clear up the doubt, Microsoft has
conducted continuous exploration on what kinds should
be moved from the cloud to the edge since 2009 [35],
ranging from voice command recognition, AR/VR, and
interactive cloud gaming [36] to real-time video analytics.
By comparison, real-time video analytics is envisioned to
be a killer application for edge computing [12], [37], [38].
As an emerging application built on top of computer vision,
real-time video analytics continuously pulls high-definition
videos from surveillance cameras and requires high com-
putation, high bandwidth, high privacy, and low latency
to analyze the videos. The one viable approach that can
meet these strict requirements is edge computing. Looking
back to the above evolution of edge computing, it can
be foreseen that novel Al applications emerged from the
sectors such as IIoT, intelligent robots, smart cities, and
smart home will play a crucial role in the popularization of
edge computing. This is mainly due to the fact that many
mobile and IoT related Al applications represent a family
of practical applications that are computation- and energy-
intensive, privacy- and delay- sensitive, and thus naturally
align well with edge computing.

Due to the superiority and necessity of running Al appli-
cation on the edge, edge Al has recently received great
attention. In December 2017, in a white paper, “A Berkeley
View of Systems Challenges for AI” [39] published by
the University of California Berkeley, the cloud-edge Al
system is envisioned as an important research direction to
achieve the goal of mission-critical and personalized Al
In August 2018, edge Al emerges in the Gartner Hype Cycle
for the first time [40]. According to Gartners prediction,
edge Al is still in the innovation trigger phase, and it will
reach a plateau of productivity in the following five to
ten years. In the industry, many pilot projects have also
been carried out toward edge Al Specifically, on the edge
Al service platform, the traditional cloud providers, such
as Google, Amazon, and Microsoft, have launched service
platforms to bring the intelligence to the edge, through
enabling end devices to run ML inferences with pre-
trained models locally. On edge Al chips, various high-end
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chips designated for running ML models have been made
commercially available on the market, as exemplified by
Google Edge TPU, Intel Nervana NNB and Huawei Ascend
910 and Ascend 310.

B. Scope and Rating of Edge Intelligence

While the term edge Al or EI is brand new, explorations
and practices in this direction have begun early. As afore-
mentioned, in 2009, to demonstrate the benefits of edge
computing, Microsoft has built an edge-based prototype to
support mobile voice command recognition, an Al applica-
tion. Albeit the early begin of exploration, there is still not
a formal definition for EI.

Currently, most organizations [41], [42] and
presses [43] refer to EI as the paradigm of running
Al algorithms locally on an end device, with data (sensor
data or signals) that are created on the device. While
this represents the current most common approach (e.g.,
with high-end AI chips) toward EI in the real world, it is
crucial to note that this definition greatly narrows down
the solution scope of EI. Running computation intensive
algorithms as exemplified by DNN models locally is very
resource-intensive, requiring high-end processors to be
equipped in the device. Such a stringent requirement not
only increases the cost of EI but is also incompatible and
unfriendly to existing legacy end devices that have limited
computing capacities.

In this paper, we submit that the scope of EI should
not be restricted to running Al models solely on the
edge server or device. In fact, as demonstrated by a
dozen recent studies, for DNN models, running them with
edge-cloud synergy can reduce both the end-to-end latency
and energy consumption when compared to the local
execution approach. Due to these practical advantages,
we believe that such collaborative hierarchy should be
integrated into the design of efficient EI solutions. Fur-
thermore, existing thoughts on EI mainly focus on the
inference phase (i.e., running the AI model), assuming
that the training of the AI model is performed in the
power cloud datacenters since the resource consumption of
the training phase significantly overweights the inference
phase. However, this means that the enormous amount of
training data should be shipped from devices or edges to
the cloud, incurring prohibitive communication overhead
as well as the concern on data privacy.

Instead, we believe that EI should be the paradigm that
fully exploits the available data and resources across the
hierarchy of end devices, edge nodes, and cloud datacen-
ters to optimize the overall performance of training and
inferencing a DNN model. This indicates that EI does not
necessarily mean that the DNN model is fully trained or
inferenced at the edge but can work in a cloud-edge-
device coordination manner via data offloading. Specifi-
cally, according to the amount and path length of data
offloading, we rate EI into six levels, as shown in Fig. 7.
Specifically, the definition of various levels of EI is given as
follows.

1744 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

Level 6
All on-device
Reduced amount ‘
e -

data offloading

Level 2
In-edge co-inference

Training
on the cloud

Level 1
Cloud-edge co-inference

Cloud Intelligence
Training and inference on the cloud

Fig. 7. Six-level rating for EIl.

1) Cloud Intelligence: Training and inferencing the DNN
model fully in the cloud.

2) Level 1—Cloud-Edge Coinference and Cloud Training:
Training the DNN model in the cloud, but inferenc-
ing the DNN model in an edge-cloud cooperation
manner. Here edge-cloud cooperation means that
data are partially offloaded to the cloud.

3) Level 2—In-Edge Coinference and Cloud Training:
Training the DNN model in the cloud, but infer-
encing the DNN model in an in-edge manner. Here
in-edge means that the model inference is carried
out within the network edge, which can be realized
by fully or partially offloading the data to the edge
nodes or nearby devices (via D2D communication).

4) Level 3—On-Device Inference and Cloud Training:
Training the DNN model in the cloud, but infer-
encing the DNN model in a fully local on-device
manner. Here on-device means that no data would
be offloaded.

5) Level 4—Cloud-Edge Cotraining and Inference: Train-
ing and inferencing the DNN model both in the
edge-cloud cooperation manner.

6) Level 5—All In-Edge: Training and inferencing the
DNN model both in the in-edge manner.

7) Level 6—All On-Device: Training and inferencing the
DNN model both in the on-device manner.

As the level of EI goes higher, the amount and path
length of data offloading reduce. As a result, the transmis-
sion latency of data offloading decreases, the data privacy
increases, and the WAN bandwidth cost reduces. However,
this is achieved at the cost of increased computational
latency and energy consumption. This conflict indicates
that there is no “best-level” in general; instead, the “best-
level” EI is application-dependent and it should be deter-
mined by jointly considering multicriteria such as latency,
energy efficiency, privacy, and WAN bandwidth cost. In the
later sections, we will review enabling techniques as well
as existing solutions for different levels of EI.
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Fig. 8. Architecture modes of distributed training. (a) Centralized.
(b) Decentralized. (c) Hybrid.

IV. EDGE INTELLIGENCE MODEL
TRAINING

With the proliferation of mobile and IoT devices, data,
which are essential for Al model training, are increasingly
generated at the network edge. In this section, we focus
on distributed training of DNN at the edge, including
the architectures, key performance indicators, enabling
techniques, and existing systems and frameworks.

A. Architectures

The architectures of distributed DNN training at the
edge can be divided into three modes: centralized, decen-
tralized, and hybrid (cloud-edge device). Fig. 8 shows the
three architectures, illustrated in (a), (b), and (c), respec-
tively. The cloud refers to the central datacenter, whereas
the end devices are represented by mobile phones, cars,
and surveillance cameras, which are also data sources. For
the edge server, we use base stations as the legend.

1) Centralized: Fig. 8(a) describes a centralized DNN
training, where the DNN model is trained in the cloud
datacenter. The data for training are generated and gath-
ered from distributed end devices such as mobile phones,
cars, and surveillance cameras. Once the data are arrived,
the cloud datacenter will perform DNN training using
these data. Therefore, the system based on the centralized
architecture can be identified in cloud intelligence, level 1,
level 2, or ;evel 3 in Fig. 7 according to the specific
inference mode that the system employs.

2) Decentralized: Under the decentralized mode as
shown in Fig. 8(b), each computing node trains its own
DNN model locally with local data, which preserves private
information locally. To obtain the global DNN model by
sharing local training improvement, nodes in the network

will communicate with each other to exchange the local
model updates. In this mode, the global DNN model can
be trained without the intervention of the cloud datacenter,
corresponding to the level 5 EI defined in Fig. 7.

3) Hybrid: The hybrid mode combines the centralized
mode and the decentralized mode. As shown in Fig. 8(c),
as the hub of the architecture, the edge servers may train
the DNN model by either decentralized updates with each
other or centralized training with the cloud datacenter;
thus, the hybrid architecture covers level 4 and level 5 as
shown in Fig. 7. The hybrid architecture is also called as
cloud-edge device training due to the involved roles.

B. Key Performance Indicators

To better assess a distributed training method, there are
six key performance indicators.

1) Training Loss: Essentially, the DNN training process
solves an optimization problem that seeks to minimize
the training loss. Since the training loss captures the gap
between the learned (e.g., predicted) value and the labeled
data, it indicates how well the trained DNN model fits the
training data. Therefore, it is expected that the training
loss can be minimized. Training loss is mainly affected by
training samples and training methods.

2) Convergence: The convergence indicator is special-
ized for the decentralized methods. Intuitively, a decen-
tralized method works only if the distributed training
processes converge to a consensus, which is the training
result of the method. The term convergence measures
whether and how fast a decentralized method converges to
such a consensus. Under the decentralized training mode,
the convergence value depends on the way the gradient is
synchronized and updated.

3) Privacy: When training the DNN model by using the
data originated at a massive of end devices, the raw data
or intermediate data should be transferred out of the end
devices. Obviously, it is inevitable to deal with privacy
issues in this scenario. To preserve privacy, it is expected
that less privacy-sensitive data is transferred out of the
end devices. Whether privacy protection is implemented
depends on whether the raw data is offloaded to the edge.

4) Communication Cost: Training the DNN model is
data-intensive since the raw data or intermediate data
should be transferred across the nodes. Intuitively, this
communication overhead increases the training latency,
energy, and bandwidth consumption. Communication
overhead is affected by the size of the original input data,
the way of transmission, and the available bandwidth.

5) Latency: Arguably, latency is one of the most funda-
mental performance indicators of distributed DNN model
training since it directly influences when the trained model
is available for use. The latency of the distributed training
process typically consists of the computation latency and
the communication latency. The computation latency is
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tightly dependent on the capability of the edge nodes.
The communication latency may vary from the size of
transmitted raw or intermediate data and the bandwidth
of network connection.

6) Energy Efficiency: When training the DNN model in a
decentralized manner, both the computation and commu-
nication processes consume enormous energy. However,
for most end devices, they are energy-constrained. As a
result, it is highly desirable that the DNN model training
is energy-efficient. Energy efficiency is mainly affected by
the size of the target training model and resources of the
used devices.

It is worth noting that the performance indicators, train-
ing loss and convergence, are common objectives, and thus
they may not be explicitly claimed by some literature on
DNN training.

C. Enabling Technologies

In this section, we review the enabling technologies for
improving one or more of the aforementioned key per-
formance indicators when training the EI model. Table 1
summarizes the highlights of each enabling technology.

1) Federated Learning: Federated learning is dedicated
to optimizing privacy issue in the above-mentioned key
performance indicators. Federated learning is an emerging
yet promising approach to preserve privacy when training
the DNN model based on data originated by multiple
clients. Rather than aggregating the raw data to a cen-
tralized datacenter for training, federated learning [45]
leaves the raw data distributed on the clients (e.g., mobile
devices) and trains a shared model on the server by aggre-
gating locally computed updates. The main challenges of
federated learning are optimization and communication.

For the optimization problem, the challenge is to opti-
mize the gradient of a shared model by the distributed
gradient updates on mobile devices. On this issue, feder-
ated learning adopts SGD. SGD updates the gradient over
extremely small subsets (minibatch) of the whole data
set, which is a simple but widely used gradient descent
method. Shokri and Shmatikov [46] design a selective
SGD (SSGD) protocol, allowing the clients to train inde-
pendently on their own data sets and selectively share
small subsets of their model’s key parameters to the cen-
tralized aggregator. Since SGD is easy to be parallelized
as well as asynchronously executed, SSGD targets both
privacy and training loss. Specifically, while preserving
client’s own privacy, the training loss can be reduced by
sharing the models among clients, comparing to training
solely on their own inputs. A flaw of [46] is that it does
not consider unbalanced and nonindependent identical
distribution (non-IID) data. As an extension, McMahan
et al. [45] advocate a decentralized approach, termed as
federated learning, and present FedAvg method for fed-
erated learning with the DNN based on iterative model
averaging. Here, the iterative model averaging means that
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the clients update the model locally with one-step SGD and
then the server averages the resulting models with weights.
The optimization in [45] emphasizes the properties of
unbalanced and non-IID since the distributed data may
come from various sources.

For the communication problem, it is the unreliable
and unpredictable network that poses the challenge of
communication efficiency. In federated learning, each
client sends a full model or a full model update back
to the server in a typical round. For large models, this
step is likely to be the bottleneck due to the unreliable
network connections. To decrease the number of rounds
for training, McMahan et al. [45] propose to increase
the computation of local updates on clients. However,
it is impractical when the clients are under severe com-
putation resources constraint. In response to this issue,
Kone¢ny et al. [47] propose to reduce communication cost
with two new update schemes, namely, structured update
and sketched update. In a structured update, the model
directly learns an update from a restricted space para-
metrized using a smaller number of variables, e.g., either
low-rank or a random mask. If using a sketched update,
the model first learns a full model update and then com-
pressed the update using a combination of quantization,
random rotations, and subsampling before sending it to the
server.

Though the federated learning technique exploits a new
decentralized deep learning architecture, it is built upon
a central server for aggregating local updates. Consider-
ing the scenario of training a DNN model over a fully
decentralized network, i.e., a network without a cen-
tral server, Lalitha et al. [48] propose a Bayesian-based
distributed algorithm, in which each device updates its
belief by aggregating information from its one-hop neigh-
bors to train a model that best fits the observations
over the entire network. Furthermore, with the emerging
blockchain technique, Kim et al. [49] propose blockchain
federated learning (BlockFL) with the devices model
update exchanged and verified by leveraging blockchain.
BlockFL also works for a fully decentralized network,
where the ML model can be trained without any central
coordination even when some devices lack their own train-
ing data samples.

2) Aggregation Frequency Control: This method focuses
on the optimization of communication overhead during the
DNN model training. On training deep learning model in
edge computing environment, a commonly adopted idea
(e.g., federated learning) is to train distributed models
locally first and then aggregate updates centrally. In this
case, the control of updates aggregation frequency sig-
nificantly influences the communication overhead. Thus,
the aggregation process, including aggregation content
as well as aggregation frequency, should be controlled
carefully.

Based on the above insight, Hsieh et al. [50] develop
the Gaia system and the approximate synchronous
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Table 1 Technologies for Distributed DNN Training at the Edge

Technology [

Highlights [ Related Work

Federated Learning dat
updates

e Preserve privacy

o Leave the training data distributed on the end devices
o Train the shared model on the server by aggregating locally-computed

[44]1-[49]

Aggregation Frequency Control

o Determine the best trade-off between local update and global parameter
aggregation under a given resource budget
o Intelligent communication control

[501-{52]

Gradient Compression

vectors

o Gradient quantization by quantizing each element of gradient vectors to
a finite-bit low precision value
o Gradient sparsification by transmitting only some values of the gradient

[53]-[57]

DNN Splitti N
pitng e Preserve privacy

Select a splitting point to reduce latency as much as possible

[58]-[61]

Knowledge Transfer Learning

o First train a base network (teacher network) on a base dataset and task
and then transfer the learned features to a second target network (student
network) to be trained on a target dataset and task

o The transition from generality to specificity

[591, [60], [62]

Gossip Training .
e Preserve privacy

e Random gossip communication among devices
Full asynchronization and total decentralization

[63]-{66]

parallel (ASP) model for geodistributed DNN model train-
ing. The basic idea of Gaia is to decouple the communica-
tion within a datacenter from the communication between
datacenters, enabling different communication and con-
sistency models for each. To this end, the ASP model
is developed to dynamically eliminate insignificant com-
munication between datacenters, where the aggregation
frequency is controlled by the preset significance threshold.
However, Gaia focuses on geodistributed datacenters that
are capacity-unlimited, making it is not generally applica-
ble to edge computing nodes whose capacity is highly
constrained.

To incorporate the capacity constraint of edge nodes,
Wang et al. [51] propose a control algorithm that deter-
mines the best tradeoff between the local update and
global parameter aggregation under a given resource
budget. The algorithm is based on the convergence
analysis of distributed gradient descent and can be
applied to federated learning in edge computing with
provable convergence. To implement federated learn-
ing in the capacity-limited edge computing environment,
Nishio and Yonetani [52] study the client selection prob-
lem with resource constraints. In particular, an update
aggregation protocol named FedCS is developed to allow
the centralized server to aggregate as many client updates
as possible and to accelerate performance improvement in
ML models. An illustration of FedCS is shown in Fig. 9.

3) Gradient Compression: To reduce the communica-
tion overhead incurred by decentralized training, gradient
compression is another intuitive approach to compress
the model update (i.e., gradient information). To this
end, gradient quantization and gradient sparsification have
been advocated. Specifically, gradient quantization per-
forms lossy compression of the gradient vectors by quan-
tizing each of their elements to a finite-bit low precision

value. Gradient sparsification reduces the communication
overhead by transmitting part of the gradient vectors.

Lin et al [53] observe that 99.9% of the gradient
exchange in distributed SGD (DSGD) are redundant, which
demonstrates the power of gradient compression. Based on
this observation, Lin et al. propose deep gradient compres-
sion (DGC), which compresses the gradient by 270-600 x
for a wide range of CNNs and RNNs. To preserve accuracy
during this compression, DGC employs four methods:
momentum correction, local gradient clipping, momentum
factor masking, and warm-up training.

Inspired by [53], Tao and Li [54] propose edge SGD
(eSGD), a family of sparse schemes with both conver-
gence and practical performance guarantees. To improve
the first-order gradient-based optimization of stochastic
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Fig. 9. Overview of the FedCS protocol.
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objective functions in edge computing, eSGD includes two
mechanisms: 1) determine which gradient coordinates
are important and only transmits these coordinates and
2) design momentum residual accumulation for tracking
out-of-date residual gradient coordinates in order to avoid
low convergence rate caused by sparse updates. A concise
convergence analysis of sparsified SGD is given in [55],
where SGD is analyzed with k-sparsification or compres-
sion (e.g., top-k or random-k). The analysis shows that
this scheme converges at the same rate as vanilla SGD
when equipped with error compensation (keeping track of
accumulated errors in memory). In other words, commu-
nication can be reduced by a factor of the dimension of the
problem (sometimes even more) while still converging at
the same rate.

Quantizing the gradients to low-precision values can
also reduce the communication bandwidth. In this regard,
Tang et al. [56] develop a framework of compressed,
decentralized training and propose two different algo-
rithms, called extrapolation compression and difference
compression, respectively. The analysis on the two algo-
rithms proves that both converge at the rate of O(1/v/nT),
where n is the number of clients and T is the number of
iterations, matching the convergence rate for full precision,
centralized training. Amiri and Gunduz [57] implement
DSGD at the wireless edge with the help of a remote
parameter server and further develop DSGD in digital
and analog schemes, respectively. Digital DSGD (D-DSGD)
assumes that the clients operate on the boundary of the
multiple-access channel (MAC) capacity region at each
iteration of the DSGD algorithm and employs gradient
quantization and error accumulation to transmit their
gradient estimates within the bit budget allowed by the
employed power allocation. In analog DSGD (A-DSGD),
the clients first sparsify their gradient estimates with error
accumulation and then project them to a lower dimen-
sional space imposed by the available channel bandwidth.
These projections are transmitted directly over the MAC
without employing any digital code.

4) DNN Splitting: The aim of DNN splitting is to protect
privacy. DNN splitting protects user privacy by transmit-
ting partially processed data rather than transmitting raw
data. To enable a privacy-preserving edge-based training of
DNN models, DNN splitting is conducted between the end
devices and the edge server. This is based on the important
observation that a DNN model can be split inside between
two successive layers with two partitions deployed on
different locations without losing accuracy.

An inevitable problem on DNN splitting is how to
select the splitting point such that distributed DNN train-
ing is still under the latency requirement. On this prob-
lem, Mao et al [58] utilize the differentially private
mechanism and partitions DNN after the first convolu-
tional layer to minimize the cost of mobile devices. The
proof in [58] guarantees that applying differentially pri-
vate mechanism on activations is feasible for outsourcing
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training tasks to untrusted edge servers. Wang et al. [59]
consider this problem across mobile devices and cloud
datacenters. To benefit from the computation power of
cloud datacenters without privacy risks, Wang et al. [59]
design Arden (privAte infeRence framework based on Deep
nEural Networks), a framework that partitions the DNN
model with a lightweight privacy-preserving mechanism.
By arbitrary data nullification and random noise addition,
Arden achieves privacy protection. Considering the nega-
tive impact of private perturbation to the original data,
Wang et al. [59] use a noisy training method to enhance
the cloud-side network robustness to perturbed data.

Osia et al. [60] introduce a hybrid user-cloud frame-
work on the privacy issue, which utilizes a private-feature
extractor as its core component and breaking down large,
complex deep models for cooperative, privacy-preserving
analytics. In this framework, the feature extractor mod-
ule is properly designed to output the private feature
constrained to keep the primary information while dis-
carding all the other sensitive information. Three differ-
ent techniques are employed to make sensitive measures
unpredictable: dimensionality reduction, noise addition,
and Siamese fine-tuning.

When applying DNN splitting for privacy-preserving,
it is remarkable that this technique also works for deal-
ing with the tremendous computation of DNN. Exploiting
the fact that edge computing usually involves a large
number of devices, parallelization approaches are usu-
ally employed to manage DNN computation. DNN training
in parallel includes two kinds of parallelism: data par-
allelism and model parallelism. However, data paral-
lelism may bring heavy overhead of communication,
while model parallelism usually leads to severe under-
utilization of computation resources. To address these
problems, Harlap et al. [61] propose pipeline parallelism,
an enhancement to model parallelism, where multiple
minibatches are injected into the system at once to ensure
efficient and concurrent use of computation resources.
Based on pipeline parallelism, Harlap et al. [61] design
PipeDream, a system that supports pipelined training
and automatically determines how to systematically split
a given model across the available computing nodes.
PipeDream shows the advantage of reducing communica-
tion overhead and utilizing computing resource efficiently.
The overview of PipeDream’s automated mechanism is
shown in Fig. 10.

5) Knowledge Transfer Learning: Knowledge transfer
learning, or transfer learning for simplicity, is closely con-
nected with DNN splitting technique. In transfer learning,
for the purpose of reducing DNN model training energy
cost on edge devices, we first train a base network (teacher
network) on a base data set, and then, we repurpose
the learned features, i.e., transfer them to the second
target network (student network) to be trained on a target
data set. This process will tend to work if the features
are general (i.e., suitable to both base and target tasks)
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Fig. 10. PipeDreams automated mechanism.

instead of specific to the base task. The transition involves
a process from generality to specificity.

The approach of transfer learning seems to be promising
for learning on edge devices since it has greatly reduced
resource demand, but a thorough investigation on its effec-
tiveness is lacking. To bridge this gap, Sharma et al. [62]
and Chen et al. [44] provide extensive studies on the
performance (in both accuracy and convergence speed)
of transfer learning, considering different student network
architectures and different techniques for transferring
knowledge from teacher to student. The result varies with
architectures and transfer techniques. A good performance
improvement is obtained by transferring knowledge from
both the intermediate layers and last layer of the teacher to
a shallower student while other architectures and transfer
techniques do not fare so well and some of them even lead
to negative performance impact.

Transfer learning technique regards the shallow layers
of a pretrained DNN on one data set as a generic feature
extractor that can be applied to other target tasks or data
sets. With this feature, transfer learning is employed in
many pieces of research and inspires the design of some
frameworks. Osia et al. [60], which we have mentioned in
Section IVC4, use transfer learning to determine the degree
of generality and particularity of a private feature. Arden,
proposed in [59], partitions a DNN across the mobile
device and the cloud data center, where the raw data are
transformed by the shallow portions of the DNN on the
mobile device side. As [59] referred, the design of DNN
splitting in Arden is inspired by transfer learning.

6) Gossip Training: Aiming at shortening the training
latency, gossip training is a new decentralized training
method, which is built on randomized gossip algorithms.
The early work on random gossip algorithms is gossip
averaging [63], which can fast converge toward a consen-
sus among nodes by exchanging information peer to peer.
The gossip distributed algorithms enjoy the advantage of
full asynchronization and total decentralization as they

have no requirement on centralized nodes or variables.
Inspired by this, Gossip SGD (GoSGD) [64] is proposed
to train DNN models in an asynchronous and decentral-
ized way. GoSGD manages a group of independent nodes,
where each of them hosts a DNN model and iteratively
proceeds two steps: gradient update and mixing update.
Specifically, each node updates its hosted DNN model
locally in gradient update step and then shares its infor-
mation with another randomly selected node in mixing
update step, as shown in Fig. 11. The steps repeat until
all the DNN converge on a consensus.

The aim of GoSGD is to address the issue of speeding up
the training of convolutional networks. Instead, another
gossip-based algorithm, gossiping SGD [65], is designed
to retain the positive features of both synchronous and
asynchronous SGD methods. Gossiping SGD replaces the
all-reduce collective operation of synchronous training
with a gossip aggregation algorithm, achieving an asyn-
chronous manner.

Both Blot et al. [64] and Jin et al. [65] apply gossip
algorithms on the updates of SGD, but neither of them
has performance convergence degradation at large scale.
By deployment on large-scale systems, Daily et al. [66]
show that the trivial gossip-based algorithms at scale lead
to a communication imbalance, poor convergence, and
heavy communication overhead. To mitigate these issues,
Daily et al. [66] introduce GossipGraD, a gossip communi-
cation protocol-based SGD algorithm that is practical for
scaling deep learning algorithms on large-scale systems.
GossipGrad reduces the overall communication complexity
from ©(log(p)) to O(1) and considers diffusion such that
computing nodes exchange their updates (gradients) indi-
rectly after every log(p) steps. It also considers the rotation
of communication partners for facilitating direct diffusion
of gradients and asynchronous distributed sample shuf-
fling during the feedforward phase in SGD to prevent
overfitting.

D. Summary of Existing Systems and Frameworks

In this section, we summary the systems and framework
for distributed EI model training on the edge. An overview
of the above-mentioned existing systems and frameworks
is given in Table 2, including the architecture, EI level,
objectives, employed technologies, and effectiveness.

Fig. 11.

manner.

Communication with randomly selected partner in gossip
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Table 2 Overview of Systems and Frameworks on El Model Training

System or Framework | _ Architecture__| EI Level T Objectives T Employed Technology T Effectiveness
o Robustness to non-IID and un-
FedAve [45] Hybrid i) balanced optimization o Federated Learning ©  Reduce communication rounds by 10-100 X as compared to
© e Low communication cost o lterative model averaging synchronized stochastic gradient descent
e Privacy preservation
SSGD [46] Hybrid Level4 ° :‘:'::{ C‘;:z::g EejDENRcce) ®  Federated Learning ®  Clients’ privacy is preserved while the model accuracy beyond
o Privacy preservation ® Selective SGD training solely
Zoo [67] Hybrid Level ®  Reducing communication cost o Federated Learning ® Processes cach image within constant time despite the size
o Privacy preservation o Composable services difference of images
o Federated Learning in decentral-
BlockFL [49] Decentralized Level-6 ized manner e  Federated Learning e Latency increase up to 1.5% to achieve the optimal block
o Low latency o Blockchain generation than the simulated minimum latency
e  Privacy preservation
o Geo-distributed scalability o Speedup 1.8-53.5% over distributed machine learning sys-
e Intelligent communication mech- A f 1 tems
Gaia [50] Centralized Cloud Intelligence anism over WANs ¢ Aggregation frequency contro| ®  Within 0.94-1.40 X of the speed of running the same machine
T—— ; ) o ASP model ; !
e Generic and flexible for most learning algorithm on machines on a local area network
machine learning algorithms (LAN).
O Ly @ commmEien O it Comesim o Achieve a gradient compression ratio from 270X to 600X
bandwidth e Momentum correction without losing accuracy
DGC [53 N/A N/A i @ fom 21 cal r: i s
[EEY ® IH“_g.h “‘m}"f?’_“"",""“ without . ]]\‘/;’“1 g:““‘c“fl“‘“"}\’;{‘gk. e Cut the gradient size of ResNet-50 from 97MB to 0.35MB
osing model accuracy omentum factor Masking ) o et B T (o QD
o Fast Convergence o Warm-up training
eSGD [54] Hybrid T e  Scaling up edge training of CNN O ?f'”;f‘vfl"a"sm“"“P"'“’“‘ gradient e Reach 91.2%, 86.7%, 81.5% accuracy on MNIST data set
e Reducing communication cost coordinates . with gradient drop ratio 50%, 75%, 87.5% respectively
®  Momentum residual accumulation
) ° gi‘;":“f"i‘g“’“c Seeoriitiesey ° :“‘l"‘{ lg‘;"‘?‘fm”“ “f"i"lr’"?’?f"l“r’:”rc' ®  Reduce the communication time by 70.9%-80.7%
INCEPTIONN [68] Hybrid Level-5 Ompressio clraec compression acce eralo e Offer2.2-3.1 x speedup over the conventional training system
o Avoiding the bottleneck at aggre- o Gradient-centric aggregator-free 5 e
adl while achieving the same level of accuracy.
gators training
) » O T I Cnt o DNN splitting e The average reductions compared with the other four DNNs
Arden [59] Centralized Cloud Intelligence . jwi;l:"z“’ e Arbitrary data nullification in terms of time, memory, and energy are 60.10%, 92.07%,
o o Random noise addition and 77.05%, respectively
®  Fast convergence
e Maximizing utilization of com- e Using 4 machines to train the > 100 million parameter
PipeDream [61] Hybrid Level-5 puting resources o  DNN splitting VGG16 on the ImageNetIK dataset, PipeDream converges
e Low latency e Pipeline parallelism 2.5 faster than using a single machine and 3 faster than
®  Fast convergence data parallel training
GoSGD [64] T——— I o Speeding up DNN training o Gossip Traning e Doa better use of the exchanges comparing to EASGD
o Fast convergence o Converge a lot faster comparing to EASGD
o Speeding up DNN training PP ®  One iteration of gossiping SGD is faster than one iteration of
Gossiping SGD [65] Decentralied Level-6 © Scaling up DNN training ¢ Sossip Training all-reduce SGD
i o Model partition -— .
®  Asynchronous training e Work quickly at the initial step size.
° Rl"’d'.‘cf"g communication com- P, o Achieve about 100% compute efficiency for ResNetS0 using
GossipGraD [66] Decentralied Level-6 plexity © (ossip Training 128 NVIDIA Pascal P100 GPUs while matching the top-1
o Fast convergence ®  Model partition e -
classification accuracy published in literature.
e  Privacy preservation

In general, a key challenge for distributed EI model
training is the data privacy issue. It is because the dis-
tributed data sources may originate from individual per-
sons and different organizations. For users, they may be
sensitive to their own private data, not allowing any pri-
vate information to be shared. For companies, they have
to consider the privacy policy to avoid legal subpoenas
and extrajudicial surveillance. Therefore, the design of
distributed training systems needs to carefully consider
privacy preservation. Systems considering privacy issue
in Table 2 include FedAvg, BlockFL, GossipGraD, and so
on. The decentralized architecture is naturally friendly
to user’s privacy, for which the systems that are based
on the decentralized architecture such as BlockFL and
GossipGraD typically preserve privacy better. By contrast,
the centralized architecture involves a centralized data
collection operation, and the hybrid architecture requires
a data transmission operation. For this reason, the systems
based on these two architectures would implement more
extra efforts in data privacy protection.

Compared with the DNN training under the cloud-based
framework, the DNN training under edge-based
framework pays more attention to protecting users’
privacy and training an available deep learning model
faster. Under cloud-based training, a large amount of raw
data generated at the client side is directly transmitted

1750 PROCEEDINGS OF THE IEEE | Vol. 107, No. 8, August 2019

to the cloud data center through the long WAN, which
not only causes hidden dangers of user privacy leakage
but also consumes huge bandwidth resources. Moreovet,
in some scenarios such as military and disaster applications
when access to the cloud center is impossible, the edge-
based training will be highly desirable. On the other hand,
the cloud data center can collect a larger amount of data
and train an Al model with more powerful resources, and
hence, the advantage of cloud intelligence is that it can
train a much larger-scale and more accurate model.

V. EDGE INTELLIGENCE MODEL
INFERENCE

After the distributed training of deep learning model,
the efficient implementation of model inference at the
edge will be critical for enabling high-quality EI service
deployment. In this section, we discuss the DNN model
inference at the edge, including the architectures, key
performance indicators, enabling techniques, and existing
systems and frameworks.

A. Architectures

Besides the common cloud-based and device-cloud
inference architectures, we further define several major
edge-centric inference architectures and classify them into
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four DNN model inference modes, namely, edge-based,
device-based, edge-device, and edge-cloud modes, which
are illustrated in Fig. 12(a)-(d), respectively. We describe
the main workflow of each mode as follows.

1) Edge-Based Mode: In Fig. 12(a), device A is in the
edge-based mode, which means that the device receives
the input data then send them to the edge server. When
the DNN model inference is done at the edge server,
the prediction results will be returned to the device. In this
inference mode, since the DNN model is on the edge
server, it is easy to implement the application on different
mobile platforms. However, the main disadvantage is that
the inference performance depends on network bandwidth
between the device and the edge server.

2) Device-Based Mode: In Fig. 12(b), device B is in the
device-based mode. The mobile device obtains the DNN
model from the edge server and performs the model
inference locally. During the inference process, the mobile
device does not communicate with the edge server. There-
fore, the inference is reliable, but it requires a large amount
of resources such as CPU, GPU, and RAM on the mobile
device. The performance depends on the local device itself.

3) Edge-Device Mode: In Fig. 12(c), device C is in the
edge-device mode. In the edge-device mode, the device
first partitions the DNN model into multiple parts accord-
ing to the current system environmental factors such as
network bandwidth, device resource, and edge server
workload. Then, the device will execute the DNN model
up to a specific layer and send the intermediate data to the
edge server. The edge server will execute the remaining
layers and sends the prediction results to the device.
Compared to the edge-based and device-based modes,
the edge-device mode is more reliable and flexible. It may
also require huge resource on the mobile device because
the convolution layers at the front position of a DNN model
are computational-intensive generally.

4) Edge-Cloud Mode: In Fig. 12(d), device D is in the
edge-cloud mode. It is similar to the edge-device mode
and is suitable for the case that the device is highly
resource constrained. In this mode, the device is respon-
sible for input data collection, and the DNN model is
executed through edge-cloud synergy. The performance of

this model heavily depends on the network connection
quality.

We should emphasize that the above-mentioned four
edge-centric inference modes can be adopted in a system
simultaneously to carry out complex Al model inference
tasks (e.g., cloud-edge-device hierarchy), by efficiently
pooing heterogeneous resources across a multitude of end
devices, edge nodes, and clouds.

B. Key Performance Indicators

To describe the service quality of the EI model inference,
we introduce the following five metrics.

1) Latency: Latency refers to the time spent in the
whole inference process, including preprocessing, model
inference, data transmission, and postprocessing. For some
real-time intelligent mobile applications (e.g., AR/VR
mobile gaming and intelligent robots), they usually have
stringent deadline requirement such as 100-ms latency.
Latency indicator is affected by many factors, including the
resources on edge devices, the way of data transmission,
and the way to execute the DNN model.

2) Accuracy: Accuracy refers to the ratio of the number
of the input samples that get the correct predictions from
inference to the total number of input samples, reflecting
the performance of the DNN models. For some mobile
applications requiring a high level of reliability, such as
self-driving car and face authentication, they demand the
ultrahigh accuracy on the DNN model inference. Besides
the DNN model’s own inference capability, the inference
accuracy depends on the speed of feeding the input data
to the DNN model. For a video analytics application, under
a fast feeding rate, some input samples may be skipped due
to the edge device’s constraint resources, causing a drop in
accuracy.

3) Energy: To execute a DNN model, compared with the
edge server and the cloud data center, the end devices are
usually battery-limited. The computation and communi-
cation overheads of DNN model inference bring a large
amount of energy consumption. For an EI application,
energy efficiency is of great importance and is affected
by the size of the DNN model and the resources on edge
devices.
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Table 3 Technologies for Distributed DNN inference at the Edge

Technology \

Highlights \

Related Work

Model Compression .

Weight pruning and quantization to reduce storage and computation

[701-[77]

Model Partition

o Computation offloading to the edge server or mobile devices
e Latency- and energy-oriented optimization

[10], [78]-[86]

Partial DNNs model inference

Model Early-Exit * (101, [15], [78], [87]-[91]
e Accuracy-aware
Edge Caching o Fast response towards reusing the previous results of the same task [92]-96]
Input Filtering o Detecting difference between inputs, avoiding abundant computation [97]-[101]

Model Selection
e Accuracy-aware

o Inputs-oriented optimization

[102]-[106]

Support for Multi-Tenancy -
o Resource-efficient

o Scheduling multiple DNN-based task

[38], [104], [107]-[111]

Application-specific Optimization

o Resource-efficient

o Optimizations for the specific DNN-based application

[104], [112]

4) Privacy: IoT and mobile devices generate a huge
amount of data, which could be privacy sensitive. Thus,
it is also important to protect privacy and data security
near the data source for an EI application during the model
inference stage. Privacy protection depends on the way of
processing the original data.

5) Communication  Overhead: Except for the
device-based mode, the communication overhead
affects the inference performance of the other modes
greatly. It is necessary to minimize the overhead during
the DNN model inference in an EI application, particularly
the expensive WAN bandwidth usage for the cloud.
Communication overhead here mainly depends on the
mode of DNN inference and the available bandwidth.

6) Memory Footprint: Optimizing the memory footprint
of performing DNN model inference on mobile devices is
very necessary. On the one hand, typically, a high-precision
DNN model is accompanied by millions of parameters,
which is very hungry for the hardware resources of mobile
devices. On the other hand, unlike high-performance dis-
crete GPUs on the cloud data center, there is no dedi-
cated high-bandwidth memory for mobile GPUs on mobile
devices [69]. Moreover, mobile CPUs and GPUs typically
compete for shared and scarce memory bandwidths. For
the optimization of the DNN inference at the edge side,
the memory footprint is a nonnegligible indicator. Memory
footprint is mainly affected by the size of the original
DNN model and the way of loading the tremendous DNN
parameters.

C. Enabling Technologies

In this section, we review the enabling technologies
for improving one or more of the aforementioned key
performance indicators for EI model inference. Table 3
summarizes the highlights of each enabling technology.

1) Model Compression: To alleviate the tension between
resource-hungry DNNs and resource-poor end devices,
DNN compression has been commonly adopted to reduce
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the model complexity and resource requirement, enabling
local, on-device inference that, in turn, reduces the
response latency and has fewer privacy concerns. That is,
the model compression method optimizes the above four
indicators; latency, energy, privacy, and memory footprint.
Various DNN compression techniques have been proposed,
including weight pruning, data quantization, and compact
architecture design.

Weight pruning represents the most widely adopted
technique of model compression. This technique removes
redundant weights (i.e., connections between neurons)
from a trained DNN. Specifically, it first ranks the neurons
in the DNN according to how much the neuron contributes
and then removes the low-ranking neurons to reduce the
model size. Since removing neurons damages the accuracy
of the DNN, then how to reduce the network size mean-
while preserving the accuracy is the key challenge. For
modern large-scale DNNs, a pilot research in [70] tackled
this challenge by applying a magnitude-based weight prun-
ing method. The basic idea of this method is as follows:
first, remove small weights whose magnitudes are below
a threshold (e.g., 0.001) and then fine-tune the model to
restore the accuracy. For AlexNet and VGG-16, this method
can reduce the number of weights by 9x and 13x with
no loss of accuracy on ImageNet. The follow-up work
deep compression [71], which blends the advantages of
pruning, weight sharing, and Huffman coding to compress
DNNs, further pushes the compression ratio to 35-49x.

However, for energy-constrained end devices, the above
magnitude-based weight pruning method may not be
directly applicable since empirical measurements show
that the reduction in the number of weights does not nec-
essarily translate into significant energy saving [72]. This
is because for DNNs as exemplified by AlexNet, the energy
of the convolutional layers dominates the total energy cost,
while the number in the fully connected layers contributes
most of the total number of weights in the DNN. This
suggests that the number of weights may not be a good
indicator for energy, and the weight pruning should be
directly energy-aware for end devices. As the first step
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toward this end, an online DNN energy estimation tool
(https://energyestimation.mit.edu/) has been developed
by MIT to enable fast and easy DNN energy estimation.
This fine-grained tool profiles the energy for the data
movement from different levels of the memory hierarchy,
the number of MACs, and the data sparsity at the granu-
larity of the DNN layer. Based on this energy estimation
tool, an energy-aware pruning method called EAP [73] is
proposed.

Another mainstream technique for model compression
is data quantization. Instead of adopting the 32-bit floating
point format, this technique uses a more compact format to
represent layer inputs, weights, or both. Since representing
a number with fewer bits reduces memory footprint and
accelerates computation, data quantization improves the
overall computation and energy efficiency. Most of the
prior proposals for quantization tune the bit-width only for
a fixed number type in an ad hoc manner, which may lead
to a suboptimal result. To address this issue, the recent
work [76] investigated the problem of optimal number
representations at the layer granularity, in terms of find-
ing the optimal bit-width for the canonical format based
on the IEEE 754 Standard. This problem is challenging
due to the combinatorial explosion of feasible number
formats. In response, the authors developed a portable
API called number abstract data type (ADT). It enables
users to declare the data to be quantized in a layer (e.g.,
inputs, weights, or both) as number type. By doing so, ADT
encapsulates the internal representation of a number, thus
separating the concern for developing an effective DNN
from the concern of optimizing the number representation
at a bit level.

While most existing efforts use a single compression
technique, they may not suffice to meet the diverse require-
ments and constraints on accuracy, latency, storage, and
energy imposed by some IoT devices. Emerging studies
have shown how different compression techniques can
be coordinated to maximally compress DNN models. For
example, both deep compression [71] and Minerva [74]
combine weight pruning and data quantization to enable
fast, low-power, and highly accurate DNN inference. More
recently, researchers argue that for a given DNN, the com-
bination of compression techniques should be selected on
demand, i.e., adapting to the application-driven system
performance (e.g., accuracy, latency, and energy) and the
varying resource availability across platforms (e.g., stor-
age and processing capability). To this end, the proposed
automatic optimization framework AdaDeep [75] system-
atically formulates the goals and constraints on accuracy,
latency, storage, and energy into a unified optimization
problem and leverages DRL to effectively find a good
combination of compression techniques.

2) Model Partition: To alleviate the pressure of the EI
application execution on end devices, as shown in Fig. 13,
one intuitive idea is the model partition, offloading the
computational-intensive part to the edge server or the
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server.

lllustration for model partition between devices and edge

nearby mobile devices, obtaining a better model inference
performance. Model partition mainly cares about the issues
of latency, energy, and privacy.

The model partition can be divided into two types:
partition between server and device and partition between
devices. For the model partition between the server and
the device, Neurosurgeon [79] represents an iconic effort.
In Neurosurgeon, the DNN model is partitioned between
the device and the server, and the key challenge is to
figure out one suitable partition point to get the optimal
model inference performance. Considering latency aspect
and energy efficiency aspect, respectively, the authors pro-
pose a regression-based method to estimate the latency of
each layer in the DNN model and return an optimal par-
tition point that makes the model inference meet latency
requirement or energy requirement.

Hereafter, Ko et al. [83] propose an edge-host
partitioning method, which combines model partition
with lossy feature encoding. That is, the intermediate
data after model partition will be compressed using
lossy feature encoding before transmission. Also, jointly
leveraging model partition and lossy feature encoding,
the JALAD [81] framework formulates the model parti-
tion as an integer linear programming (ILP) problem to
minimize the model inference latency under a guaranteed
accuracy constraint. For DNNs those are characterized by a
directed acyclic graph (DAG) rather than a chain, optimiz-
ing the model partition to minimize the latency is proven
to be NP-hard in general. In response, Hu et al. [80] pro-
pose an approximation algorithm that provides the worst
case performance guarantee, based on the graph min-cut
method. The above-mentioned frameworks all have an
assumption that the server has the DNN model of the EI
application. IONN [82] propose an incremental offloading
technique for EI application. IONN partitions the DNN
layers and incrementally uploads them to allow collabora-
tive DNN model inference by mobile devices and the edge
server. Compared to the approach that uploads the entire
model, IONN significantly improves query performance
and energy consumption during DNN model uploading.

Another type of model partition is the partition between
devices. As the pioneering effort of model partition
between devices, MoDNN [85] introduces a WiFi direct
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technique to build a microscale computing cluster in WLAN
with multiple authorized WiFi-enabled mobile devices for
partitioned DNN model inference. The mobile device that
carries the DNN task will be the group owner and the
others act as the worker nodes. Two partition schemes
are proposed in MoDNN to accelerate DNN layer execu-
tion. The experiment shows that with two to four worker
nodes, MoDNN accelerates the DNN model inference by
2.17-4.28x. In the follow-up work MeDNN [84], greedy
2-D partition is proposed to adaptively partition the DNN
model into multiple mobile devices and utilize a structured
sparsity pruning technique to compress the DNN model.
MeDNN improves the DNN model inference by 1.86-2.44x
with two to four worker nodes and saves 26.5% of addi-
tional computing time and 14.2% of extra communication
time. Note that DNN layers are partitioned horizontally in
MoDNN and MeDNN, whereas DeepThings [86] employs
a fused tile partitioning method that partitions the DNN
layers vertically to reduce the memory footprint.

DeepX [77] also tries to partition DNN models but it
only partitions the DNN model into several submodels and
distributes them on local processors. DeepX proposes two
schemes: runtime layer compression (RLC) and deep archi-
tecture decomposition (DAD). The layer after compression
will be executed by specific local processors (CPU, GPU,
and DSP). An additional note is that when we have multi-
ple tasks of model partition, we need to make optimization
for the scheduler. LEO [113] is a novel sensing algorithm
scheduler that maximizes the performance for multiple
continuous mobile sensor applications by partitioning the
sensing algorithm execution and distributing tasks on CPU,
coprocessor, GPU and the cloud.

3) Model Early Exit: A DNN model with a high accuracy
usually has a deep structure. It consumes a large number
of resources to execute such a DNN model on the end
device. To accelerate model inference, the model early-exit
method leverages output data of early layer to get the clas-
sification result, which means that the inference process
is finished by using the partial DNN model. Latency is the
optimization target of model early exit.

BranchyNet [87] is a programming framework that
implements the model early-exit mechanism. With
BranchyNet, the standard DNN model structure is modified
by adding exit branches at certain layer locations. Each exit
branch is an exit point and shares part of DNN layers with
the standard DNN model. Fig. 14 shows a CNN model with
three five points. The input data can be classified at these
diverse early-exit points.

Based on BranchyNet, a framework named DDNNs [88]
for distributed DNNs across the cloud, edge, and devices is
proposed. DDNNs have a three-layer structure framework,
including device layer, edge server layer, and cloud layer.
Each layer represents an exit point of BranchyNet. Three
aggregation methods, including max pooling (MP), aver-
age pooling (AP), and concatenation (CC), are proposed.
The aggregation methods work when multiple mobile
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devices send intermediate to an edge server or when
multiple edge servers send intermediate data to the cloud
data center. MP aggregates the data vectors by taking
the maximum of each component. AP aggregates the data
vectors by taking the average of each component. CC just
simply concatenates the data vectors as one vector. Also,
built on top of BranchyNet, Edgent [10] is proposed to
navigate the accuracy-latency tradeoff when jointly apply-
ing model early-exit and model partition. The basic idea
of Edgent is to maximize the accuracy under a given
latency requirement via the regression-based layer latency
prediction model.

In addition to BranchyNet, there are different methods
to implement model early exit. For example, the cascading
network [91] simply adds the MP layer and fully connected
layer to the standard DNN model and achieves a speedup
of 20%. Deeplns [15] proposes a manufacture inspection
system for the smart industry using DNN model early
exit. In Deeplns, edge devices are responsible for data
collection, the edge server acts as the first exit point,
and the cloud data center acts as the second exit point.
Then, Lo et al. [90] propose adding an authentic opera-
tion (AO) unit to the basic BranchyNet model. The AO unit
determines whether an input has to be transferred to the
edge server or cloud data center for further execution by
setting different threshold criteria of a confidence level for
different DNN model output classes. Bolukbasi et al. [89]
train a policy that determines whether the current samples
should proceed to the next layer by adding regularization
to the evaluation latency of the DNN model.

4) Edge Caching: Edge caching is a new kind of method
used to accelerate DNN model inference, i.e., optimizing
the latency issue by caching the DNN inference results.
The core idea of edge caching is to cache and reuse the
task results such as the prediction of image classification
at the network edge, reducing the querying latency of EI
application. Fig. 15 shows the basic process of the semantic
cache technique; if the request from mobile devices hits
the cached results stored in the edge server, the edge
server will return the result, otherwise, the request will be
transferred to the cloud data center for inference with the
model of full precision.

Glimpse [92] is a pioneering effort to introduce cache
technique to DNN inference task. For an object detection
application, Glimpse proposes to reuse the stale detection
result to detect the object on current frames. The results
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of the detected object of the stale frames are cached on
the mobile devices, and then, Glimpse extracts a subset
of these cached results and computes the optical flow of
features between the processed frames and the current
frame. The computing results of optical flow will guide
us to move the bounding box to the right location in
the current frame. Glimpse achieves an acceleration of
1.6-5.5x%.

However, caching results locally do not scale beyond
tens of images, then Cachier [93] is proposed to achieve
recognition of thousands of objects. In Cachier, results of
EI application are cached in the edge server, storing the
features of input (e.g., image) and the corresponding task
results. Then, Cachier uses the least frequently used (LFS)
as the cache replacement strategy. If the input cannot hit
the cache, the edge server will transfer the input to the
cloud data center. Cachier can increase responsiveness by
3x or more. Precog [94] is the extension of Cachier. In Pre-
cog, the cached data are not only stored in the edge server
but also in the mobile device. Precog uses predictions of
Markov chains to prefetch data onto the mobile device and
reach a speedup of 5x. In addition, Precog also proposes
to dynamically adjust the cached feature extraction model
on the mobile device according to the environment infor-
mation. Shadow Puppets is another improved version of
Cachier. Cachier extracts features from the input using the
standard feature extraction like locality-sensitive hashing
(LSH), but these features may not reflect the similarity as
precise as the human dose. Then, in Shadow Puppets [96],
it uses a small-footprint DNN to generate hash codes to
represent the input data and get a remarkable latency
improvement of 5-10x.

Considering the application scenario that the same
application runs on multiple devices in close proximity
and the DNN model often processes similar input data,
FoggyCache [95] is proposed to minimize these redundant
computations. There are two challenges in FoggyCache:
one is that the input data distribution is unknown so the
problem is how to index the input data with a constant
lookup quality and the other is how to represent the sim-
ilarity of the input data. To address these two challenges,
FoggyCache proposes adaptive LSH (A-LSH) and homog-
enized KNN (H-kNN) schemes, respectively. FoggyCache
reduces computation latency and energy consumption by
a factor of 3x to 10x.

5) Input Filtering: Input filtering is an efficient method
to accelerate DNN model inference, especially for the video
analytics. As shown in Fig. 16, the key idea of input
filtering is to remove the nontarget-object frames of input
data, avoiding redundant computation of the DNN model
inference, thus improving inference accuracy, shortening
inference latency, and reducing energy cost.

NoScope [97] is proposed to accelerate video analysis
by skipping the frames that have little change. To this end,
NoScope implements a difference detector that highlights
temporal differences across frames, for example, the detec-
tor monitors the frames to check whether cars appear
in the frames and the frame with cars will be processed
in the DNN model inference. The difference is detected
by using lightweight binary classifiers. In a scenario of
continuous video transmission from a swarm of drones,
Wang et al. [98] optimize for the first hop wireless band-
width of DNN inference. In particular, four strategies are
proposed to reduce total transmission: EarlyDiscard, Just-
in-Time-Learning (JITL), Reachback, and Context-Aware.

FFS-VA [100] is a pipelined system for multistage video
analytics. There are three stages to build the filtering
system of FFS-VA. The first is a stream-specialized different
detector (SDD) that is used to remove the frames only con-
taining a background. The second is a stream-specialized
network model (SNM) to identify target-object frames. The
third is a Tiny-YOLO-Voc (T-YOLO) model to remove the
frames whose target objects are fewer than a threshold.
Canel et al. [101] propose a two-stage filtering system for
video analytics. It first extracts the semantic content of the
frames by outputting the intermediate data of DNN, and
then, these output features are accumulated in a frame
buffer. The buffer is viewed as a DAG, and the filtering
system uses the Euclidean distance as the similarity metric
to figure out top-k interesting frames.
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Fig. 16. Workflow of input filtering.
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The above-mentioned frameworks focus on filtering
uninteresting frames of a video stream for a single cam-
era. ReXCam [99] accelerates DNN model inference on
cross-camera analytics. The ReXCam leverages a learned
spatiotemporal model to filter video frames. ReXCam
reduces computation workload by 4.6 x and improves DNN
model inference accuracy by 27%.

6) Model Selection: Model selection method is proposed
to optimize the DNN inference issue of latency, accuracy,
and energy. The main idea of model selection is that we
can first train a set of DNN models for the same task with
various model sizes offline and then adaptively select the
model for inference online. Model selection is similar to the
model early exit, and the exit point of the model early-exit
mechanism can be viewed as a DNN model. However,
the key difference is that the exit point shares part of DNN
layers with the main branch model, and the models in the
model selection mechanism are independent.

Park et al. [102] propose a big/little DNN model selec-
tion framework. That is, a little and fast model is used to
try to classify the input data and the big model is only used
when the confidence of the little model is less than a pre-
defined threshold. Taylor et al. [103] point out that differ-
ent DNN models (e.g., MobileNet, ResNet, and Inception)
reach the lowest inference latency or highest accuracy on
different evaluation metrics (top-1 or top-5) for different
images. Then, they propose a framework for selecting the
best DNN in terms of latency and accuracy. In this frame-
work, a model selector is trained to select the best DNN for
different input images. Similarly, IE-CNN [105] also trains
a model selector called the recognition predictor (RP) to
change the model used in the task. RP is a DNN model
of multitask, meaning that RP has multiple outputs. The
output of RP represents the probability of top-1 label of
each candidate DNN model. The input of RP is the image
and if the output of RP is over the predefined threshold,
the corresponding DNN model will be selected.

Besides the optimization for DNN model inference
latency, aiming at energy saving, Stamoulis et al. [106]
cast the adaptive DNN model selection issue as a hyperpa-
rameter optimization problem by taking into account the
accuracy and communication constraints imposed by the
devices. Then, a Bayesian optimization (BO) is adopted
to solve this problem, achieving an improvement by up to
6x in terms of minimum energy per image under accuracy
constraints.

7) Support for Multitenancy: In practice, an end or edge
device typically runs more than one DNN applications
concurrently. For example, the advanced driver-assistance
system (ADAS) for Internet vehicles simultaneously runs
DNN programs for vehicle detection, pedestrian detec-
tion, traffic sign recognition, and lane line detection.
In this case, multiple DNN applications would compete for
limited resource. Without careful support for multitenancy,
i.e., resource allocation and task scheduling for those con-
current applications, the global efficiency would be greatly
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deteriorated. The support for multitenancy focuses on the
optimization of energy and memory footprint.

Taking the dynamics of runtime resources into
consideration, NestDNN [107] is proposed to offering flex-
ible resource-accuracy tradeoffs for each DNN model.
NestDNN implements a new model pruning and recovery
scheme, transforming the DNN model into a single com-
pact multicapacity model that consists of a set of descen-
dent models. Each descendent model offers a unique
resource—accuracy tradeoff. For each concurrent descen-
dent model, NestDNN encodes its accuracy and latency
into a cost function and then builds a resource-accuracy
runtime scheduler to make the optimal tradeoff for each
concurrent descendent model. Also, addressing the chal-
lenge of enabling flexible tradeoffs, Mainstream [110] uses
the popular transfer-learning DNN training method to train
multiple DNN models with different degrees of accuracy
and implements a greedy approach to find the optimal
scheduler that fits the cost budget. For multiple DNN model
executions on one single device, HiveMind [111] is pro-
posed to improve the GPU utilization for these concurrent
workloads. HiveMind consists of two key components: a
compiler and a runtime module. The compiler optimizes
the data transmission, data preprocessing, and computa-
tion across the workloads, and then, the runtime module
transforms the optimized models into an execution DAG,
which will be executed on the GPU while trying to extract
as much concurrency as possible.

At a finer granularity, DeepEye [108] is proposed to
optimize the inference of multitask on the mobile device by
scheduling the executions of heterogeneous DNN layers.
DeepEye first segregates DNN layers of all tasks into two
pools: convolution layers and fully connected layers. For
the convolution layers, a first-in(endash)first-out (FIFO)
queue-based execution strategy is employed. For the fully
connected layers, DeepEye adopts a greedy approach for
caching the parameters of the fully connected layers to
maximize memory utilization.

8) Application-Specific Optimization: While the above-
mentioned optimizing techniques are generally applicable
to EI applications, application-specific optimization can
be exploited to further optimize the performance of EI
applications, i.e., accuracy, latency, energy, and memory
footprint. For example, for video-based applications, two
knobs, i.e., frame rate and resolution, can be flexibly
adjusted to reduce resource demand. However, since such
resource-sensitive knobs also deteriorate the inference
accuracy, they naturally incur a cost-accuracy tradeoff. This
requires us to strike a good balance between the resource
cost and inference accuracy when tuning the video frame
rate and resolution.

Toward the above goal, Chameleon [104] adjusts the
knobs for each video analytic task by sharing the best top-k
configuration between each task. In Chameleon, the video
tasks are grouped according to the spatial correlation, and
then, the leader of the group will search for the best



Zhou et al.: Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing

top-k configurations and share them with the followers.
DeepDecision [112] formulates the knob-tunning problem
as a multiple-choice multiple-constraint knapsack program
and solves it with an improved brute-force search method.

It is also worth noting that, in the computer architec-
ture community, hardware acceleration for efficient DNN
inference has been a very hot topic and gathered extensive
research efforts. Interested readers are encouraged to refer
to the recent monograph [114] for more comprehensive
discussions about recent advancements on hardware accel-
eration for DNN processing.

D. Summary of Existing Systems and Frameworks

To showcase the application of the above enabling
techniques for EI model inference, the relevant systems
and frameworks are summarized in Table 4, including
the perspectives of target applications, architecture and
EI level, optimization objectives and adopted techniques,
as well as effectiveness.

Clearly, the existing systems and frameworks have
adopted different subsets of enabling techniques tailored
to specific EI applications and requirements. To maximize
the overall performance of a generic EI system, com-
prehensive enabling techniques and various optimization
methods should work in a cooperative manner to pro-
vide rich design flexibility. Nevertheless, we would face a
high-dimensional configuration problem that is required to
determine a large number of performance-critical configu-
ration parameters in real time. Taking video analytics, for
example, the high-dimensional configuration parameters
can include video frame rate, resolution, model selection,
and model early exit. Due to the combinatorial nature,
the high-dimensional configuration problem involves a
huge search space of parameters and is very challenging
to tackle.

VI. FUTURE RESEARCH DIRECTIONS

Based on the comprehensive discussions above on existing
efforts, we now articulate the key open challenges and
future research directions for EL.

A. Programming and Software Platforms

Currently, many companies around the world focus
on the Al cloud computing service provisioning. Some
leading companies are also starting to provide program-
ming/software platforms to deliver edge computing ser-
vices, such as Amazon’s Greengrass, Microsoft’s Azure IoT
Edge, and Google’s Cloud IoT Edge. Nevertheless, cur-
rently, most of these platforms mainly serve as relays for
connecting to the powerful cloud data centers.

As more and more Al-driven computation-intensive
mobile and IoT applications are emerging, EI as a ser-
vice (ElaaS) can become a pervasive paradigm and EI
platforms with powerful edge Al functionalities will be
developed and deployed. This is substantially differ-
ent from ML as a service (MLaaS) provided by public

clouds. Essentially, MLaaS belongs to cloud intelligence
and it focuses on selecting the proper server configura-
tion and ML framework to train model in the cloud in
a cost-efficient manner. While in a sharp contrast, ElaaS
concerns more about how to perform model training and
inference in resource-constrained and privacy-sensitive
edge computing environments. To fully realize the poten-
tial of EI services, there are several key challenges to
overcome. First, the EI platforms should be heterogeneity-
compatible. In the future, there are many dispersive EI
service providers/vendors, and the common open standard
should be set such that users can enjoy seamless and
smooth services across heterogeneous EI platforms any-
where and anytime. Second, there are many Al program-
ming frameworks available (e.g., Tensorflow, Torch, and
Caffe). In the future, the portability of the edge Al mod-
els trained by different programming frameworks across
heterogeneously distributed edge nodes should be sup-
ported. Third, there are many programming frameworks
designed specifically for edge devices (e.g., TensorFlow
Lite, Caffe2, CoreML, and MXNet); however, empirical
measurements [115] show that there is no single win-
ner that can outperform other frameworks in all metrics.
A framework that performs efficiently on more metrics can
be expected in the future. Last but not least, lightweight
virtualization and computing techniques such as container
and function computing should be further explored to
enable efficient EI service placement and migration over
resource-constrained edge environments.

B. Resource-Friendly Edge AI Model Design

Many existing Al models such as CNN and LSTM
were originally designed for applications such as com-
puter vision and natural language processing. Most of
the deep learning-based AI models are highly resource-
intensive, which means that powerful computing capability
supported by abundant hardware resources (e.g., GPU,
field-programmable gate array (FPGA), and TPU) is impor-
tant to boost the performance of these Al models. There-
fore, as mentioned above, there are many studies to exploit
model compression techniques (e.g., weight pruning) to
resize the Al models, making them more resource-friendly
for edge deployment.

Along with a different line, we can promote a
resource-aware edge Al model design. Instead of utilizing
the existing resource-intensive Al models, we can lever-
age the AutoML idea [116] and the neural architecture
search (NAS) techniques [117] to devise resource-efficient
edge AI models tailored to the hardware resource con-
straints of the underlying edge devices and servers. For
example, methods such as RL, genetic algorithm, and BO
can be adopted to efficiently search over the AI model
design parameter space (i.e., Al model components and
their connections) by taking into account the impact of
hardware resource (e.g., CPU and memory) constraints
on the performance metrics such as execution latency and
energy overhead.
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Table 4 Overview of Systems and Frameworks on El Model Inference

System or Framework | Applicati [ Architecture | EI Level [ Objectives [ Optimi [ Online/Offline | Effectiveness
o Frame rate adaptation
VideoEdge [38] Video Analytics Cloud-Edge-Device Level-1 ®  Accuracy ® Resolution adaptation Online ® Accuracy improvement:
® Resource cost o  Multi-tenancy 5.4-254%
e Service placement
N ®  Frame rate adaptation R oy
Chameleon [104] Video Analytics Device-cloud Level-1 : /;:::;:g ot e Resolution adaptation Online o 3;50““6 GESEieg 2
* * ®  Model selection
DeepX [77] Mobile Sensing Apps On Device Level-2 e  Accuracy e Model compression Online e Energy reduction: 7.12-
e Energy ®  Model partition 26.7 X
Edgent [10] N/A Device-Edge Level-2 ®  Accuracy o Eary-exit Offline ® Accuracy improvement
e Latency ®  Model partition
®  Accuracy e Latency reduction: 9.8 X
AdaDeep [75] N/A On Device Level-3 e Energy e Model compression Online e  Energy reduction: 4.3 X
e Storage ®  Storage reduction: 38 X
Deeplns [15] ToT Edge-Cloud Level-1 O Leamisy o Early-exit Offline ® Latency reduction: 0.98-
e Latency 121x
e Latency reduction: 3.1-
Neurosurgeon [79] N/A Device-Cloud Level-1 o Latency e Model partition N/A 40.7x .
e Energy e  Energy reduction: 59.5%-
94.7%
. . e Hardware .
Minerva [74] N/A On Device Level-3 e Energy Acceleration Offline ©  Energy saving: 8
® Model Compression
Ac , e Latency reduction:
FoggyCache [95] 1loT Device-Edge Level-2 : L;fg‘;’:” e Edge Caching Online 310X x
Y ®  Energy reduction: 3-10 X
NoScope [97] Video Analytics Cloud Cloud Tntelligence o Latency o Input filtering N/A L ‘;;;e&f; reduction:  265-
JALAD [81] N/A Device-Cloud Level-1 o Laency O Uit Offline S atency reduction:
®  Model partition 1-25.1x
DDNNG [88 N/A Cloud-Edge-Device Level-1 e Latency ; N/A e Latency reduction: over
[88] g O femmi e Model selection 20%
e Latency reduction: 3 X
FES-VA [100] Video Analytics On Device Level-3 o Latency e Input filtering N/A e Throughput
®  Multi-tenancy improvement: more
than 7 x
. o  Throughput
Cachier [93] N/A Cloud-Edge Level-1 e Throughput e Edge Caching N/A improvement: more
than 3 X
Accurac 3 ® Accuracy improvement:
Taylor et al. [103] N/A On Device Level-3 O L““”W ® Input filtering N/A 7.52%
. atency ®  Model selection e Latency reduction: 1.8 X
e Accuracy e Application-level op- s duction:
DeepDecision [112] Video Analytics Cloud-Edge Level-1 e Latency timization N/A . z_ﬂlgniy reduction:
e Energy e Model selection

C. Computation-Aware Networking Techniques

For EI, computation-intensive Al-based applications are
typically run on the distributed edge computing environ-
ment. As a result, advanced networking solutions with
computation awareness are highly desirable, such that the
computation results and data can be efficiently shared
across different edge nodes.

For the future 5G networks, the ultrareliable low-
latency communication (URLLC) has been defined for
mission-critical application scenarios that demand low
delay and high reliability. Therefore, it will be promising
to integrate the 5G URLLC capability with edge comput-
ing to provide ultrareliable low-latency EI (URLL-EI) ser-
vices. Also, advanced techniques such as software-defined
network and network function virtualization will be
adopted in 5G. These techniques will enable flexi-
ble control over the network resources for supporting
on-demand interconnections across different edge nodes
for computation-intensive Al applications.

On the other hand, autonomous networking mech-
anism design is important to achieve efficient EI ser-
vice provisioning under dynamic heterogeneous network
coexistence (e.g., LTE/5G/WiFi/LoRa), allowing newly
added edge nodes and devices to self-configure in the
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plug and play manner. Also, the computation-aware com-
munication techniques are starting to draw attention,
such as gradient coding [118] to mitigate straggler effect
in distributed learning and over-the-air computation for
DSGD [119], which can be useful for edge Al model train-
ing acceleration.

D. Tradeoff Design With Various DNN
Performance Metrics

For an EI application with a specific mission, there is
usually a series of DNN model candidates that are capable
of finishing the task. However, it is difficult for software
developers to choose an appropriate DNN model for the EI
application because the standard performance indicators
such as top-k accuracy or mean average precision fail to
reflect the runtime performance of DNN model inference
on edge devices. For instance, during the EI application
deployment phase, beside accuracy, inference speed and
resource usage are also critical metrics. We need to explore
the tradeoffs between these metrics and identify the factors
that affect them.

For the object recognition application, Huang et al.
[120] investigate the influence of the main factors, e.g.,
number of proposals, input image size, and the selection
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of feature extractor, on inference speed and accuracy.
Based on their experiment results, a new combination of
these factors is found to outperform the state-of-the-art
method. Therefore, it is necessary to explore the tradeoffs
between different metrics, helping in improving the effi-
ciency of deploying EI application.

E. Smart Service and Resource Management

By the distributed nature of edge computing, edge
devices and nodes that offer EI functionality are dispersive
across diverse geolocations and regions. Different edge
devices and nodes may run different Al models and deploy
different specific Al tasks. Therefore, it is important to
design efficient service discovery protocols such that users
can identify and locate the relevant EI service providers
to fulfill their need in a timely manner. Also, to fully
exploit the dispersive resource across edge nodes and
devices, the partition of complex edge Al models into small
subtasks and efficiently offloading these tasks among the
edge nodes and devices for collaborative executions are
essential.

Since for many EI application scenarios (e.g., smart
cities), the service environments are of high dynamics and
it is hard to accurately predict future events. As a result,
it would require the outstanding capability of online edge
resource orchestration and provisioning to continuously
accommodate massive EI tasks. Real-time joint optimiza-
tion of heterogeneous computation, communication, and
cache resource allocations and the high-dimensional sys-
tem parameter configuration (e.g., choosing the proper
model training and inference techniques) tailored to
diverse task demands are critical. To tackle the algorithm
design complexity, an emerging research direction is to
leverage the Al techniques such as DRL to adapt efficient
resource allocation policy in a data-driven self-learning
way.

E Security and Privacy Issues

The open nature of edge computing imposes that the
decentralized trust is required such that the EI services
provided by different entities are trustworthy [121]. Thus,
lightweight and distributed security mechanism designs
are critical to ensure user authentication and access con-
trol, model and data integrity, and mutual platform veri-
fication for EI. Also, it is important to study novel secure
routing schemes and trust network topologies for EI service
delivery when considering the coexistence of trusted edge
nodes with malicious ones.

On the other hand, the end users and devices would
generate a massive volume of data at the network edge,
and these data can be privacy sensitive since they may
contain user’s location data, health or activities records,
or manufacturing information, among many others.
Subject to the privacy protection requirement, e.g., EU’s
General Data Protection Regulation (GDPR), directly shar-
ing the original data sets among multiple edge nodes
can have a high risk of privacy leakage. Thus, federated
learning can be a feasible paradigm for privacy-friendly

distributed data training such that the original data sets
are kept in their generated devices/nodes and the edge
Al model parameters are shared. To further enhance the
data privacy, more and more research efforts are devoted
to using the tools of differential privacy and homomor-
phic encryption and secure multiparty computation for
designing privacy-preserving Al model parameter-sharing
schemes [122].

G. Incentive and Business Models

EI ecosystem will be a grand open consortium that
consists of EI service providers and users, which can
include but not limited to: platform providers (e.g.,
Amazon), Al software providers (e.g., SenseTime), edge
device providers (e.g., Hikvision), network operators (e.g.,
AT&T), data generators (e.g., IoT and mobile device
owners), and service consumers (i.e., EI users). The
high-efficiency operation of EI services may require close
collaboration and integration across different service
providers, e.g., for implementing expanded resource shar-
ing and smooth service handover. Thus, proper incentive
mechanism and business model are essential to stimulate
effective and efficient cooperation among all members of
the EI ecosystem. Also, for EI service, a user can be a
service consumer and, meanwhile, a data generator as
well. In this case, a novel smart pricing scheme is needed
to factorize user’s service consumption and the value of its
data contribution.

As a means for decentralized collaboration, blockchain
with a smart contract may be integrated into EI ser-
vice by running on decentralized edge servers. It is
worthwhile to do research on how to smartly charge
the price and properly distribute the revenue among
the members in the EI ecosystem according to their
proof of work. Also, designing resource-friendly light-
weight blockchain consensus protocol for EI is highly
desirable.

VII. CONCLUSION

Driving by flourishing of both AI and IoT, there is a
stringent need to pushing the Al frontier from the cloud
to the network edge. To fulfill this trend, edge com-
puting has been widely recognized as a promising solu-
tion to support computation-intensive Al applications in
resource-constrained environments. The nexus between
edge computing and Al gives birth to the novel paradigm
of EL

In this paper, we conducted a comprehensive survey
of the recent research efforts on EI. Specifically, we first
reviewed the background and motivation for Al running at
the network edge. We then provided an overview of the
overarching architectures, frameworks, and emerging key
technologies for the deep learning model toward training
and inference at the network edge. Finally, we discussed
the open challenges and future research directions on EI.
We hope this survey is able to elicit escalating attentions,
stimulate fruitful discussions, and inspire further research
ideas on EIL ]
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