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Enabling Public Cameras to Talk to the Public

SIYUAN CAO, Purdue University, USA
HE WANG, Purdue University, USA

This paper asks: Is it possible for cameras in public areas, say ceiling cameras in a museum, to send personalized messages to

people without knowing any addresses of their phones? We deine this kind of problem as Private Human Addressing and

develop a real-time end-to-end system called PHADE to solve it. Unlike traditional data transmission protocols that need to

irst learn the destination’s address, our cameras rely on viewing user’s motion patterns, and use the uniqueness of these

patterns as the address for communication. Once receiving the wireless broadcast from the cameras, the user’s phone can

locally compare the łmotion addressž of the packet against its own motion sensor data, and accept the packet upon a łgoodž

match.

In addition to requiring no data from users, our system transforms the motion patterns into low-dimensional codes to

prevent leakage of user’s walking behaviors. Thus, a hacker who collects all the broadcast messages would still not be able to

infer the motion patterns of users. Real-world experiments show that PHADE discriminates 2, 4, 6, 8, 10 people with 98%, 95%,

90%, 90%, 87% correctness and about 3 seconds constant delay. Since abundant and accurate information can be extracted

from videos, PHADE would ind applications in various contexts. Extended to localization system and audio guide, PHADE

achieves a median error of 0.19m and 99.7% matching correctness, respectively. PHADE can also deliver messages based on

human gestures. There is no need to deploy any extra infrastructures or to require users to rent any dedicated device.

CCS Concepts: · Security and privacy→ Privacy protections; ·Networks→Naming and addressing;Mobile networks;

· Software and its engineering→ Real-time systems software;
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1 INTRODUCTION

Surveillance cameras are pervasively deployed in public areas, such as shopping mall, museum, galleries and so
on [24]. Although videos captured by these cameras are widely used to identify people for security purposes,
their utility is limited by the unavailability of any direct communication between people and the camera. To the
best of our knowledge, there is no existing end-to-end and real-time system which digitally associates people in
the camera view with their smartphones. If one develops such a system, it may be possible to deliver customized
messages to a user’s smartphone, even if no IP/MAC address of that smartphone is known. In this paper, we
deine this problem as Private Human Addressing and aim to design a practical system that realizes it.
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Fig. 1 illustrates an application scenario of the system. In a museum, people are walking around or standing to
look at the exhibits. Although standing near the right side, the man may still receive an introduction to a painting
on the left wall, which he is looking at. The messages are customized for some targets with certain external
characteristics and transmitted using people’s behavioral addresses as their identiiers, which are extracted from
their movements in the video. For example, the introduction to a painting may be sent to those who show interest
to it (the camera would know the user is looking or pointing at it); some activity information may be sent to
those who are with their children (the camera can recognize children through their heights).

I want to know 

more about 

that painting…

Fig. 1. A camera is able to send context-aware messages to a targeted user, without knowing any addresses of their phones.

One may ask: why not attach a Bluetooth beacon to each exhibit and send messages when people approach it?
One issue with this method is that it’s hard to adjust the range of transmission, which should be considered case by
case based on the distance between exhibits. Another issue is that we intend to enable context-aware messaging.
The message content is not only based on the user’s location but also related to other context attributes (e.g.
human behaviors like pointing, gazing or hesitating; appearance features like height or clothing; something that
is happening and requires the user’s attention). Bluetooth-based beacons fall short in capturing this contextual
information, while surveillance camera provides the opportunity of sending context-aware messages in many
application scenarios. For instance, a system based on surveillance cameras can warn a pedestrian if it’s texting
while crossing the road. It can also enable superstore chains like Walmart to send the customers coupons, speciic
to products of their interest, in real time.

Prior works have presented some schemes for human ID association using cameras and sensors. ID-Match [31]
uses RFID tags worn by people to assign a unique ID to each person in the camera view. Use of such tags requires
user registration and is not suitable for public areas where not everyone might wear these tags. Insight [45, 46]
demonstrates that motion patterns and clothing colors can be used as a temporary ingerprint for recognizing
a person. [26] asks people to wear sensors on their belts and then associates people in the camera view with
the accelerometer readings. However, none of these works implement a scalable and practical real-time system
for applications requiring communication between the camera and humans. Moreover, the latter two require
the users to upload sensor data to the server, which raises privacy concerns. A system solving the human
addressing problem should ideally be robust, real-time and privacy-protecting, so that it can be extended to many
context-aware applications.

The key ideas of our work are (1) to leverage the diversity in human motion features to distinguish individuals,
and (2) to exploit the consistency between motion features extracted from video and sensors. The server receives
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streamed videos and performs pedestrian detection on each frame. Once the total amount of frames is large
enough to make up a tracking window, the server runs pedestrian tracking schemes to associate a person in
each frame to a continuous tracklet. Motion features, e.g. how the user moves and turns, are then extracted from
the tracklet. After that, the server creates a packet with the application-centric content and inserts the motion
features as the destination address; this message is broadcast to all clients over the wireless medium, say Wi-Fi.
Upon the receipt of a message, the client compares its own sensor motion feature with the included motion
address to determine if this message is for itself.
Implementing the above idea into a real system presents a number of challenges. First, today’s existing

pedestrian tracking procedure is not in real time. Initially, the tracking procedure takes about 5.3 times longer
than receiving the video frames. This is not acceptable in a real system as the delay will accumulate and the
messages generated for users may become stale. Second, there may be privacy concerns if the server requires the
users to upload their sensor data, or if the server just broadcasts all motion patterns that are captured by the
camera towards the public. Under the former condition, users can’t keep anonymous if identiied through sensor
ingerprinting [4, 10]. Private information may also be referred from the uploaded data. In the latter case, users
can easily know how others are behaving. Hackers can even recover users’ walking traces if walking directions
are included in the motion address.
To tackle these two challenges, we irst accelerate the overall procedure on the server side. Overlapping

communication and computation largely helps us to make our system real-time. Besides that, we also optimize
the pedestrian tracking algorithm from several aspects to considerably speed up the tracking process. Secondly,
to deal with the privacy concerns, we keep the users’ personal sensing data within their smartphones and let
the clients distributively make their own decisions based on received video motion features, which naturally
keeps the users anonymous. Moreover, to prevent users’ walking behavior from being revealed to the public, we
transform the raw features via principal component analysis (PCA) [17], a commonly used technique to reduce
the dimension of features. This blurs partial details about the walking patterns, ultimately preserving the main
characteristics of users. We name our system as PHADE since the blurring processing łfadesž people’s motion
details out.
PHADE is implemented into a real-time end-to-end system using Samsung Galaxy S4 as clients and S5 as IP

cameras. Two PCs with dual NVIDIA GTX 1080 Ti SLI are used as a server running processes in a pipelined
and parallel manner; Wi-Fi is used for video streaming from the cameras to the server and for broadcasting
messages from the server to the clients. Evaluations from real world demonstrate the ability to discriminate 2, 4,
6, 8, 10 people with 98%, 95%, 90%, 90%, 87% correctness and about 3 seconds constant delay. When extending our
human addressing system to do video-based localization, the median localization accuracy is 0.19m, while for
99 percentile, the error is 0.65m. When used as an automatic audio guide, the matching results are correct in
99.7% cases. Based on gestures detected via OpenPose[6], our system can also deliver messages according to arm
pointing directions.

Our main contributions are summarized as follows.

• We propose a new notion called Private Human Addressing and design an end-to-end system to solve this
problem in the real world.

• From a technical perspective, we accelerate the tracking process on the server and make it real-time; we
design packet structure by selecting simple but efective motion features for computing.

• We investigate the possibility of motion leakage with diferent forms of broadcast features and protect user
privacy by conducting PCA transformation on features and requiring no sensing data from users.

• We demonstrate the performance of PHADE in three application examples, i.e. indoor localization, automatic
audio guide, and gesture-based messaging.
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Fig. 2. System overview. Videos are streamed to a server to track people in each camera views. Local tracklets from various

cameras are then stitched into global tracklets. Motion features for each tracklet are extracted and transformed into address

codes to protect user behavior details. The server broadcasts messages labeled with address codes and model parameters.

And the client will duplicate the same transformation on sensor motion features and locally decide which message to accept

by comparing with the address codes.

2 SYSTEM OVERVIEW

Fig. 2 illustrates a functional overview of PHADE. Multiple cameras are continuously monitoring parts of a public
area (e.g. museum, gallery or shopping mall) with some overlaps, and meanwhile streaming the recorded videos
to a server. Once receiving a new video frame, the server conducts pedestrian detection [12] on it and caches the
frame with its detection results into a bufer for further processing. Then the tracking unit associates pedestrian
detection responses in continuous frames from each camera into local tracklets, where these tracklets represent
various individuals in a camera view. After that, these local tracklets from diferent cameras are stitched in both
spatial and temporal space to generate global tracklets representing individuals in the entire area.
Once the global tracklets have been generated, several types of motion features (e.g. isWalking, walking-

direction, etc.) are extracted and reorganized into a set of feature vectors, Fi = [f 1i , f
2
i , ...], for user i , where f

j
i

denotes the feature vector of type j. Since raw motion features contain abundant information about walking
behaviors and may also reveal walking path histories, simply sending raw features to the public may cause privacy
concerns among users. Therefore, feature vectors of the same type are integrated into a feature matrix F j =

[f
j
1 , f

j
2 , ...], which will be transformed into address codes V j

= [v
j
1,v

j
2, ...] using Principal Component Analysis

(PCA) to diminish walking details and meanwhile preserve the distinguishable characteristics. The address code
tuple < v1

i ,v
2
i , ... > is used as the communication address for user i . To ensure the same transformation process

can be duplicated by the clients on sensor-based features, the transformation related parameters (e.g. feature
timestamps, feature preprocessing parameters and coeicient matrix, etc.) are also saved. The address code tuple
and model parameters are both sent to the users together with a piece of application-customized message in a
structured packet. In order to run in real time, jobs conducted on the server are separated into several stages and
accomplished in a pipelined and parallel manner. Messages are guaranteed to be sent to targeted users with a
constant and short delay.
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Although the clients are passively listening to all broadcast messages, they are given the freedom to choose
whether to accept the messages and which one to accept. Once a smartphone carried by a user hears a broadcast
packet, the smartphone will extract motion features G = [д1,д2, ...] from its sensor readings. By utilizing the
received model parameters, these sensor motion features are then transformed in the same way as on the server
side to obtain the corresponding sensor address code S = [s1, s2, ...]. During the hierarchical comparison between
tuples < s1, s2, ... > and < v1

i ,v
2
i , ... > for i = 1, 2, ..., the candidate message Msдi for user i is passed with its

video address code to the next decision level if the similarity is higher than a threshold. The multi-level matching
decider inally comes up with a decision of whether to accept each received messageMsдi . After going through
the entire matching levels, if only a single video address code fulills all the threshold requirements, the decider
will convey the corresponding message to the application level for further usage. Otherwise, the decider will
generate a inal decision of łUnsurež and discard all received messages.

3 DESIGN DETAILS

3.1 Multi-camera Real-time Human Tracking

This section irst describes the tracking scheme cooperatively used on multiple cameras. Optimizations on both
the tracking scheme and the server structure are then detailed.
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Fig. 3. Tracking scheme. Single Camera Tracking Unit is applied to each video stream to obtain local tracklets in the current

sliding window. Ater going through four steps of pedestrian detection, low-level association, Category Free Tracking and

high-level association, the generated local tracklets for each camera are then spatially stitched into global tracklets in

the entire region covered by camera views. To ensure tracklet IDs are inherited along the time, temporal stitching is then

performed between current and previous windows. Finally, the fully stitched tracklets in current window are stored for

further feature extraction.

3.1.1 Tracking Scheme. As shown in Fig. 3, the tracking scheme is composed of three functional modules.
Single Camera Tracking Unit (SCTU) is applied to each sliding window [52] (Wi , with a length of 8 seconds and a
step of 2 seconds) of a video stream and outputs local tracklets for people in individual camera view. It adopts
a uniied framework in [51], combining two mainstream tracking approaches, i.e. Association Based Tracking
(ABT) [2, 36, 37, 50, 51] and Category Free Tracking (CFT) [20, 33, 48]. Based on a pre-trained detector [11, 13],
ABT conservatively associates detection responses from neighboring frames into short low-level tracklets. Then
CFT relies on the immediate detected regions to extend the head or tail of the low-level tracklets. This partial
recovery of ends helps to reduce the gap between tracklets which represent an identical person. The extended
tracklets are further associated using Hungarian algorithm [30, 50] and smoothed by Kalman ilter [28] to obtain
high-level local tracklets. Finally, the local tracklets are spatially stitched between cameras and temporally stitched
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Camera 1 Camera 2(a) Camera 1 Camera 2(b)

Fig. 4. Tracking results in a real scenario. With two cameras cooperatively monitoring a lobby, people in the camera views

are labeled with their tracklet IDs. t6 is correctly and stably tracked even if it is occluded or it crosses various camera views

and sliding windows.

with tracklets inWi−1, to generate latest global tracklets. Here we also add a latest human pose detection scheme
called OpenPose [6, 41, 49], as a complement to the existing pre-trained detector. OpenPose not only improves
the detecting and tracking accuracy in cases where a person is not fully visible because of occlusion, but also
provides the possibility of analyzing each person’s gestures and activities.

Fig. 4 illustrates an example of tracking results in our experiments. With two cameras cooperatively monitoring
parts of a lobby, people in the camera views are labeled with their tracklet IDs. Even if people are occluded or
cross various camera views and sliding windows (e.g. t6 in Fig. 4), the tracking results are still correct and stable.

3.1.2 Optimizations for Real Time. Although the above tracking scheme is feasible in oline scenarios, compu-
tation speed and tracking accuracy still present critical barriers to realizing it in a real-time system. Optimizations
in several aspects must be made in both tracking algorithms and server structure.

Pruning sample space in CFT: The low-level tracklets obtained from associating detection responses in
neighboring frames are often fragmented because of missing detections in some frames. Fig. 5(a)-(c) show
consecutive detection responses which are able to form a low-level tracklet, while Fig. 5(d) shows a missing
detection in the next frame. Therefore CFT is used to narrow the gaps between fragmented tracklets. The common
approach to performing CFT on a frame is to generate a set of samples with randomly disturbed heights around
the predicted response by linear motion model [51]. Then a potential extension is chosen from the samples by
extracting appearance features (e.g. color histogram, texture [42], and Histogram of Oriented Gradient descriptors
[8]) from each sample and comparing the similarity one by one with the existing tracklet.

(a) (b) (c) (d) (e) (f)

Fig. 5. Pruning CFT sample space. (a)-(c) are detection responses on consecutive frames. (d) shows a missing detection on

the next frame. (e) shows a height-aware sample space for the frame in (d). (f) shows the similarity heat map for the sample

space in (e) and a gradient search path for the local optimal sample.
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Because of the intensive computation cost of extracting and comparing appearance features, we prune the
sample searching space using two methods. (1) Height-aware CFT. Real-world heights of bounding boxes can
be estimated using projective geometry[15, 16], we reversely calculate the image-plane height for each sample
according to its location and use the determined height for further searching instead of the randomly disturbed
ones. The dot array in Fig. 5(e) shows centroids of a 9×11 sample space, which has been pruned by the determined
heights. The dashed rectangle illustrates a sample with a reasonable and ixed height at (1, 1). (2) Gradient-search
CFT. One of our empirical observation is that the chosen potential sample often locates close to the center of
sample space. Instead of traversing all samples, we enhance searching eiciency by performing gradient search
from the central sample at (5, 6) to obtain a local optimum. Fig. 5(f) shows a heat map of similarity between
the tracklet and each sample. An example of gradient search path is shown with arrows, in which the optimum
sample locates at (3, 5).

Pipelined and parallel scheme: As videos are continuously streamed to the server for tracking, a serial
processing scheme cannot well balance multiple tasks including receiving frames, tracking and communicating
with clients (shown in Fig. 2). Therefore, we devise a pipelined and parallel scheme (shown in Fig. 6) which
uses three types of separated processes to handle diferent sets of tasks. In the camera process (PCi ), pedestrian
detection is performed for each new frame on its arrival at the server. The frame is then cached into a bufer
together with its detection results. Once the bufer is illed with frames to compose a sliding window (with a
total video length of two seconds as set in Sec. 3.1.1), the tracking process (PT i ) conducts pedestrian tracking on
the cached frames, while the camera process waits for the frames for next window. The tasks on the tracking
process include low-level association, CFT, and high-level association, among which CFT occupies most of the
computation time. Once pedestrian tracking for the same window has been inished on all tracking processes,
the stitching process (PS ) merges local tracklets into global ones and then completes rest jobs related to feature
processing and packet transmission.
When using pipelining, it is necessary that the computation time of each stage is hard bounded [54]. If

pedestrian tracking within a sliding window is not inished before the next window totally arrives, the delay will
accumulate over time, resulting in frame loss. Therefore, a hard deadline is set to terminate CFT early if no time
is left at this stage, while other tasks can always be inished in a negligible period of time. Within the limited
time, CFT is conducted in a token-like manner to equally extend each tracklets.

3.2 Motion Extraction

We now describe how we deine motion features and how they are extracted from both videos and sensors.
Motion features qualiied for matching and comparing between videos and sensors ought to meet the following

requirements. First, an eicient motion feature should have high distinguishability, which means that it holds
rich diversity among diferent people and can be used to easily discriminate their walking behaviors. Second,
reliable motion features extracted from the two sides need to be consistent, which validates comparison. Third,
due to the concerns about power consumption on smartphones and limited computation time for each stage on
the server, features are required to be easily extracted with modest computation cost.

Based on above requirements, some intuitive options are considered as unsuitable for our system. Extracting
step-related motion features (e.g. step phase and gait, etc.) from videos sufers from intensive computation cost
and therefore poor scalability to a large number of people [14]. In contrast, walking speed can be easily calculated
from videos whereas it is challenging to obtain it from sensors. The performance of approaches like integrating
accelerometer readings, combining step count with stride length or feature-based estimating depends on the
orientation and position of the phone. Also, walking direction attained from the compass is not suitable for many
indoor scenarios because the compass itself is susceptible to ferromagnetic interference [38].
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Fig. 7. Motion features from video and sensor. (a) IsWalking with masks for transition period. (b) Relative Walking Direction

with masks for choppiness.

Therefore, we choose to utilize two types of motion features named as IsWalking and Relative Walking Direction
for the beneit of simpleness and robustness.

IsWalking: To determine whether a person in the video is walking, we check the velocity of bounding boxes
generated by Kalman ilter during the tracking process. On the user side, we irst project sensor acceleration
onto gravity and calculate the variance of the projected values within two seconds. Then we mark IsWalking as
łYesž if the variance is above a pre-set threshold. The decisions on both sides along a period of time are shown in
Fig. 7(a). However, because the process of starting or stopping walking lasts for a while, a mask on the derived
features is added to serve as a cushion against the uncertainty during this transition period (speed is 0.2 ∼ 0.5
m/s). Only features which are not masked are taken into comparison.

Relative Walking Direction: Relative Walking Direction is deined as the direction in which a person moves
in reference to his/her initial direction at the beginning of a motion period. Relative direction can also be derived
from the velocity of bounding boxes without extra computation cost. On the user side, we irst project rotation
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rate onto gravity and then integrate it to get relative rotation. As shown in Fig. 7(b), Relative Walking Direction
estimated from the video rapidly jumps about 180 degrees and returns back to normal. This choppy direction on
the video side is caused by subtle waggles of the human body when the person is actually stationary. Similarly,
we cope with this exception with a mask and cover up the direction features when the person is static or moving
below a speed threshold (0.6 m/s).
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Fig. 8. Motion transformation. (a) shows Relative Walking Direction and its simulated samples generated by random walks.

(b) shows how PCA emphasizes parts of Relative Walking Direction with large variance. The first principal component is

visualized in the background, where darker shade means more emphasis on the corresponding part. Part A is less emphasized

due to high similarity between user 1, 3 and 4. Part B is more emphasized due to large diversity among all users. (c) shows

how feature vectors with noises are distributed on the K-dimensional space (K = 3) ater transformation.

3.3 Motion Transformation

Broadcasting packets with raw video motion features attached as communication addresses will cause severe
information leaks. By continuously capturing these packets, a hacker can recover people’s walking traces and
know how they behaved. This does harm in many scenarios, for example, supermarkets or shopping malls
deinitely don’t want consumer behaviors (e.g. where the customers walk, and where they stop to touch or pick
up items) to be revealed to their competitors - imagine browsing histories on Amazon are leaked to Netlix. Even
worse, this information may be manipulated by criminals for illegal activities like tailing. It’s natural to ask: Why
not pick some fragments from the raw motion features to use as addresses? One reason is that, although this
method partially hides the shape of walking traces, each fragment still leaks behavior details which may imply
important information such as human health conditions [29]. More importantly, searching for an efective subset
of fragments is essentially a feature selection problem, which is known as NP-hard [1, 21]. Even the approximate
solutions still sufer from high time complexity.
Based on these above thoughts, we choose principal component analysis (PCA) to transform raw motion

features to low-dimensional address codes and therefore alleviate motion leaks. As a widely used statistical
procedure, PCA aims to compress information by projecting a set of high-dimensional components onto a
low-dimensional space and meanwhile maximally reserve the variance of the projected data. PCA is appreciated
in our case for two advantages: (1) It highlights the most distinguishable parts among motion features without
large computation efort such as model training; (2) The number of principal components (K) can be used as a
knob to tune the amount of diversity reserved after transformation, which is traded of against the amount of
motion leak.
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Before conducting PCA on the video-based motion features, one problem still needs to be solved. Considering
that diferent approaches are used to extract features from videos and sensors, there should be a certain amount
of tolerance for minor and inevitable inconsistency. Therefore we add pepper noise and random walks onto

IsWalking and Relative Walking Direction, respectively, to generate a set of simulated feature vectors p
j
i =

[f
j
i + n

j
i,1, f

j
i + n

j
i,2, ..., f

j
i + n

j

i,R
] for each feature vector f

j
i , where R is the number of simulated feature vectors

and n
j
i,r is the r th noise. Simulated features of type j for all users are denoted as P j = [p

j
1, ...,p

j

N
], where N is the

number of users. We illustrate P j which is generated by adding random walks to Relative Walking Direction in
Fig. 8(a) and omit pepper noise in the interest of space. Note that, for the features covered up by masks, PCA
treats them as missing data and runs the standard process [40].

Now PCA runs on P j and generates a K × Lj coeicient matrix Coe f f j , where Lj is the feature vector length
of type j. Fig. 8(b) is an intuitive illustration of how PCA emphasizes parts of motion features with signiicant
diversity. The irst principal component is visualized in the background, where darker shade means more emphasis
on the corresponding part. Note that part A is less emphasized due to the high similarity among Relative Walking
Direction of user 1, 3 and 4. In contrast, part B is more emphasized due to the large diversity. After the PCA

transformation, P j is converted into K-dimensional codes H j
= [h

j
1, ...,h

j

N
], where h

j
i = Coe f f j ∗ p

j
i . Fig. 8(c)

illustrates how H j is distributed in the K-dimensional space. Four groups representing h
j
i (i = 1, 2, 3, 4) are well

separated even though we just use the irst three principal components (K = 3). Note that the address codes

v
j
i which will be actually used in packets are transformed from the original feature vectors without noise via
Equation 1.

v
j
i = Coe f f

j ∗ f
j
i (1)

Recall thatCoe f f j is sent in packets to ensure the same transformation on sensor side (See Fig. 2). The original

motion feature can be partially recovered to f ′
j
i via Equation 2.

f ′
j
i = (Coe f f j )T ∗v

j
i (2)

To demonstrate how much motion information can be hidden by the transformation, we choose user 1 as an
example and show howmuch Relative Walking Direction and the walking trace can be recovered from her address
code. Although the partial trend is reserved in the recovered feature vector (shown in Fig. 9(a)), locations within
the trace cannot be precisely reproduced (shown in Fig. 9(b)). This largely prevents motion leaks and avoids the
walking history and details being inferred from the addresses. We will elaborate more detailed evaluation later in
Sec. 4.2. By decreasing K , more motion information can be hidden but meanwhile this may afect the matching
performance.

3.4 Packet Encapsulation

Now, the server organizes all data to broadcast into a uniform format. As shown in Fig. 10, each packet is labeled
with an application ID, which represents the function of customized messages. Since the server is aware of current
network conditions, it speciies a Time Shift Range to let the clients search for corresponding sensor readings
with a tolerance to various network delay. In each model generated for the feature of type j, a series of feature
timestamps are shared among all users to extract corresponding motion features. PCA Coeicient Matrix and
other optional parameters (e.g. matching thresholds) are also sent as parts of the model. In the ield for each user

i , a pair of address code v
j
i and maskm

j
i is included for each model j.

3.5 Multi-Level Decision

Once receiving a broadcast message, the user will irst extract corresponding sensor-based motion features for
each model j according to the received feature timestamps by using the methods introduced in Sec. 3.2. The
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Fig. 9. Motion and trace recovery. Using PCA (K = 3) on user 1’s Relative Walking Direction as examples, the feature vectors

and the traces cannot be precisely recovered.

Fig. 10. Packet format. The packet is composed of application ID, Time Shit Range regarding the network delay, model

parameters, and fields (e.g. address codes, masks and messages) for users.

sensing motion feature дj is then transformed into sensing address code s j by duplicating the same transformation
process via PCA (Equation 3).

s j = Coe f f j ∗ дj (3)

Then the tuples < s1, s2, ... > and < v1
i ,v

2
i , ... > are hierarchically compared for all receivedMsдi . The similarity

between each pair is measured by their Euclidean distance. The candidate messageMsдi is passed to the next
decision level if the similarity is higher than a certain threshold. The multi-level decider inally comes up with a
decision of whether to accept each received message. After going through all matching levels, if only a single
video address code fulills all the threshold requirements, the decider will convey the corresponding message
to the application level for further usage. Otherwise, the decider will generate a inal decision of łUnsurež and
discard all received messages.

4 EVALUATION

This section discusses the experiment methodology and performance results of PHADE.
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4.1 Implementation and Methodology

The client side of PHADE is implemented on the Samsung Galaxy S4 smartphone, which logs accelerometer,
gyroscope and gravity readings at 100Hz. The smartphone runs our PHADE App to match with address codes
and receive application-customized messages in real time. We set up a server using two PCs with dual NVIDIA
GTX 1080 Ti SLI, and run MATLAB and C++ programs on each. Two Samsung Galaxy S5 smartphones are used
as IP cameras to record and continuously stream videos to the server. The video is recorded at a frame rate of
15 fps, a bit rate of 2000 kbps, and a resolution of 800 × 480 1. Wi-Fi is used for video streaming and message
transmission. And the number of principal components K is set to 3.

(a) (b)

Fig. 11. Experiment scenario. (a) shows a pair of example frames with ten users walking in lobby A. (b) shows areas

cooperatively covered by two cameras. where each camera is marked with a cross.

PHADE is evaluated via real-life experiments with 17 volunteers in three diferent university lobbies (A, B and
C) which covers around 192m2, 100m2, and 270m2 respectively. The experiments were executed in ive sessions.
(1) We arranged some paintings and sculptures in lobby A and set it as a mock museum. The volunteers put a
phone in pocket, and naturally walk and pause as they pleased. Five times of 10-minute experiment are conducted
with 2, 4, 6, 8 and 10 users in the scene. (2) 6 users walked in lobby B with the phones put in their pockets. (3) A
similar experiment was conducted in lobby C with four users, where the phone is put in each volunteer’s coat or
pant pocket. (4) We pre-labeled ten points on the ground of lobby C and set the minimum distance between two
points to 0.5 m. Then two volunteers were asked to walk and deliberately pause at these points. With the phones
in their pockets, the volunteers wore earphones to listen to audio clips representing each point. This is to mimic
an application of PHADE as an automatic audio guide. (5) Three people walked in lobby A, pretending the left
wall, the right wall and the roof of the mock museum have one mural on each of them. The users could point at
any of these three sides and would expect to receive messages about the corresponding mural. Each session last
for 50, 8, 10, 5, and 10 minutes, respectively.

4.2 Performance Results

The following questions are of our interests:

• How well does PHADE perform overall?
• How does PHADE achieve real-time tracking?
• How much is motion history blurred?
• How does PHADE perform in applications?

1These video settings are based on a trade-of between video processing speed and tracking accuracy. We omit the details in the interest of

space.
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(1) How well does PHADE perform overall?

Here we use the irst experiment session to demonstrate the overall performance with diferent numbers of users.
Tracklet IDs generated from the latest sliding window are sent right away in a message. Fig. 11(a) illustrates the
example frames with ten users in lobby A. Fig. 11(b) shows the covered area of each camera with shades and the
camera positions with crosses.

By comparing tracklet IDs from accepted messages, we obtain the matching performance, shown in Fig. 12(a).
Our system achieves 98%, 95%, 90%, 90%, 87% matching correctness for 2, 4, 6, 8 and 10 users respectively using 18
seconds of motion features. The performance is degraded as the number of users increases because the occlusion
between people happens more frequently as there are more users walking in the limited area. This can be
mitigated by put the cameras higher or on the ceiling.
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Fig. 12. (a)Matching performance. Occlusion partially afects the matching results as the number of users in a limited

experiment area increases. (b) Computation time on server. The time is bounded around 3 seconds, which is caused by the

hard boundary for each stage in the pipeline.

Fig. 12(b) plots the CDF of computation time for each sliding window on the server side. The computation time
on the server contains the time cost for tracking, motion extraction, motion transformation, and encapsulation.
Note that the time is bounded around 3 seconds, which is caused by the hard boundary for each stage in the
pipeline. On the client side, the computation time is less than 0.4 seconds at 99 percentile.

(2) How does PHADE achieve real-time tracking?

Based on the video captured in the second session, we evaluate how the tracking scheme is optimized and
accelerated with the techniques described in Sec. 3.1.2. Evidently, compared with processing videos from multiple
cameras one by one, the parallel design guarantees the tracking process to be linearly sped up. So we use the
video captured by only one camera in the second experiment session for fairness.

Fig. 13(a) and Fig. 13(b) show how much the tracking time is compressed and how the tracking performance
changes while incrementally adding each technique. The height-aware CFT beneits the tracking performance
regarding precision and the number of ID switches. And all the optimizations jointly contribute to accelerating the
tracking scheme and make the system real-time. Originally, the delay of generating tracking results is accumulated
as the video length increases. Now the tracking delay for the last sliding window is shortened to a constant value
of around 2 seconds. One observation is that adding the hard bound to each stage increases the number of ID
switches a bit. However, compared with its improvement to the computation time, it’s still necessary to use the
pipeline.
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Fig. 13. Improvements in tracking time and performance. (a) shows that the tracking delay is shortened to a constant time.

(b) shows that the tracking performance while incrementally adding the optimization techniques.

(3) How much is motion history blurred?

(a) (b)

Fig. 14. Motion blurring. (a) shows the distances between the starting point of a recovered trace and the ground truth largely

increase when using transformed address code, which implies modest motion leak in PHADE. (b) shows two examples of

recovered traces using various motion features.

Here we assume that a hacker is listening to broadcast packets. Combining this motion features with the
current position and walking direction of a user, the hacker is able to trace back the user’s walking history.
We irst manually label the ground truth positions of users in session three. Walking traces are recovered

from one of the following three types of motion features with various motion periods: (1) velocity (speed and
corresponding direction); (2) raw motion features (i.e. IsWalking, Relative Walking Direction); (3) address codes
after transformation by PCA. The distance between the starting point of a recovered trace and the ground truth
is used as the metrics to measure the amount of motion leak.

These distances are statistically shown in Fig. 14(a) for the recovered traces tracing back to various time points.
When trying to recover traces back to 5 minutes ago, the above three methods generate the starting points with a
median distance of 0.21 m, 2.7 m and 13.7 m from the ground truth. Since the velocity from the video is computed
from each frame via the Kalman ilter, it can always precisely recover traces with a constant distance from the
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ground truth and thus causes severe motion leaks. Considering raw motion features, Relative Walking Direction
is integrated with a ixed average walking speed of 1.5 m/s [5] during the period when a user is walking (indicated
by IsWalking). Motion is still largely leaked due to the high precision of video-based Relative Walking Direction.
However, the distance from ground truth rises to a median of 13.7 m when using transformed address codes,
which means the hacker can hardly infer the walking histories.

Fig. 14(b) shows two examples of 20-second recovered traces, which are derived from the above three motion
features, comparing with the ground truth. The recovered traces are greatly distorted when using address codes
after transformation. This implies modest motion leak in PHADE.

(4) How does PHADE perform in applications?

Indoor localization. Simply using location information obtained from the video [18, 19] as the customized
messages, PHADE can be easily adopted into a localization application. Fig. 15(a) illustrates the appwe implemented
to receive and show real-time locations for the phone user. Fig. 15(b) shows the localization error with four
users walking in lobby C. The median error is 0.19 m and the error is 0.65 m at 99 percentile, which makes
PHADE amenable to most location-based services [27, 39]. The localization accuracy is barely afected by the
number of users since the locations don’t rely on any wireless signal.

(a) (b)

Fig. 15. Indoor localization. (a) The app with user position and direction on the map. (b) The localization errors.

Automatic audio guide. We also evaluate PHADE when it is used as an automatic audio guide. Fig. 16(a)
shows how we set up for the experiment, where the minimum distance between two points is 0.5 m. Fig. 16(b)
reports the confusion matrix for those ten points. The point matching is accurate in 99.7% cases, which implies
that our system is capable of distinguishing exhibits which are immediately close to each other. This advantages
PHADE over others schemes such as Bluetooth.

Gesture-based messaging. In some scenarios such as requesting information about unreachable displays,
simply pointing at it to send the request may be a good alternative to searching for it with its name or index.
To demonstrate an example of context-aware messaging, we set up an experiment in which users imagined
that there were murals on the walls and they could point at them to get introductions. We detect three gestures
(i.e. pointing to the left wall, the right wall or the roof) using the body parts generated by OpenPose, and send
customized messages to the user according to the łmuralž that it is pointing at. Two examples of detected gestures
are illustrated in Fig. 17(a) and (b). Taking the direction of gravity as the reference direction, these three diferent
gestures are classiied according to the user’s arm angles. The angle ranges for pointing left, right and up are set
to [−135,−80), (80, 135] and (−135,−180] ∪ (135, 180], respectively. In Fig. 17(c), the dashed boxes show three
examples of pointing gestures and the corresponding arm angles over time. Here we are just presenting a proof of
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(b)

50 cm

(a)

Fig. 16. Automatic audio guide. (a) Ten points setup for audio guide experiments. (b) The confusion matrix for ten pre-labeled

points.

concept and don’t claim a contribution to that. The detection performance could be improved with more complex
algorithms. Table 1 and Table 2 show the confusion matrix for gesture detection results and message receiving
performance. Except for the cases of misdetection, most gesture-based messages are received correctly. And the
message sending delay (from when the gesture starts until the corresponding message is sent out) is shown in
Fig. 17(d), where the median sending delay is 3.2 seconds and it’s 4.6 seconds at 97 percentile.
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Fig. 17. Gesture-based messaging. (a) Pose when pointing to the let wall. (b) Pose when pointing to the roof. (c) shows

examples of arm angles during each type of pointing gesture. The three dashed boxes represent pointing to the let wall, the

roof and the right wall, respectively. (d) The time intervals since the pointing gesture starts to the corresponding message is

sent.

Table 1. The confusion matrix for detected pointing ges-

tures.

up left right others

up 42 6 5 4
left 0 32 0 6
right 1 0 42 0
others 4 4 1 433

Table 2. The confusion matrix for received gesture-based

messages.

up left right others

up 38 6 5 7
left 0 26 1 10
right 2 1 38 3
others 6 3 2 432
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5 DISCUSSION

In this section, we discuss several limitations and untapped opportunities with PHADE.
Similar motion patterns.While PHADE works in most cases, one exception is when two or more users are

walking in similar patterns. One opportunity is to dynamically decide whether to extract more sophisticated
motion features (such as step phase) to increase distinguishability. Note that real-time human pose estimation
has been accomplished by [6], it’s feasible to extract more ine-grained motion features as addresses. However,
this trades of the timeliness of message delivery for matching accuracy.

Cooperation with sensors. PHADE requires no sensor data from users and protects user privacy from this
aspect. However, if there are some volunteers willing to upload their sensor data to the server, it is feasible to
build a digital map with ambient sensing data, e.g. magnetic luctuation. Seeing a targeted user walking across
certain positions, the camera may conjecture how the sensing patterns may look like on this user’s smartphone
and uses them as łsensing addressesž. In addition to the motion addresses that we currently adopt, these sensing
addresses can improve the distinguishability among users.

Message encryption. To protect user privacy, PHADE applies PCA transformation to partially hide walking
behaviors from the public. However, users may still feel uncomfortable as the messages for them are broadcast to
the public. To cope with this concern, one possible solution is to design a symmetric key to encrypt the messages.
Note that although the blurred motion features have been broadcast, the rest part is kept as a private and shared
knowledge between the server and the client, which may be suitable as a symmetric key. We leave this to our
future work.

6 RELATED WORK

Camera-based communication. Traditionally, cameras are used as a receiver for information in visual com-
munication. For example, HiLight [32] encodes data into pixel translucency changes atop any screen content
to realize real-time screen-camera communication. InFrame++ [43] enables simultaneous communication for
both users and devices on full-frame video contents. ARTcode [53] preserves both image and code features in
one visual pattern. [3] creates a model of a screen-to-camera communication system to predict the information
capacity based on receiver perspective. In contrast, PHADE enables cameras to talk to users, which is in a reversed
direction.

Motion information leaks. Recently, motion leakage is brought to researchers’ attention. PowerSpy [35]
shows that aggregate power consumption implies user’s location. MoLe [47] leverages the pattern in English
words to infer what a user is typing on the keyboard. [44] uses embedded sensors on wearable devices to capture
inputs on ATM keypads. [9] studies the privacy bound of human mobility and reports that four spatial-temporal
points are enough to identify 95% of individuals. While PHADE demonstrates the motion leak from videos and
proposes PCA transformation as a solution.

Camera sensor fusion. Several works exist which utilize a fusion of camera and mobile sensors with a
wide variety of applications. Overlay [23] uses a combination of the smartphone camera and various sensors
to build a geometric representation of an environment to enable augmented reality on the phone. Gabriel [22]
employs image capturing and mobile sensing to develop a cognitive assistance system. Authors in [7] have used
smartphone’s motion and light sensors together with the camera to allow enhanced biometric authentication on
phones through facial recognition. Compared with these prior works in which camera and sensors are always on
the same device and complementary to each other in the same task, our work introduces the novel concept of
using sensors to allow communication between the camera and people in the camera view.

ID association. A key contribution of our work is the ability to identify and associate individuals in the
camera view with their smartphones. Some schemes use spatial location information as an identiier for mobile
devices. For example, Tracko [25] tracks the relative 3D locations between multiple devices by fusing Bluetooth
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low energy signals, inaudible stereo sounds and inertial sensors, and uses these locations as the destination
identiiers to send data. Compared with Tracko, PHADE uses human motion patterns as addresses instead of
spatial information and is not restricted by the spreading range of Bluetooth signal, which makes PHADE more
suitable for communicating with moving people. Other schemes for user ID association within an environment
exist which use various techniques and devices for identiication. ID-Match [31] uses both RFID tags worn by
people and 3D depth camera to recognize and assign IDs to individuals. In [34], RFID and BLE are combined with
a stereo-based identiication system to recognize individuals in outdoor environments. For such approaches, the
identiication relies on BLE beacons or the users wearing RFID tags. This makes them infeasible for public areas
with a large number of people since many of them might not be carrying previously registered tags. Moreover,
if a user switches its tag with another user, these systems will not be able to associate the IDs correctly. Our
system, on the other hand, temporarily associates a user in camera view with its smartphone and requires no
preregistration. Use of motion address allows it to work in public areas. And it can still correctly identify an
individual even if she changes her phone. Insight [45] recognizes people through their motion patterns and
clothing colors serving as a temporary ingerprint for an individual. [26] has developed an ID matching algorithm
for associating people, detected by the camera, to the accelerometer readings from a sensor worn on their belts.
However, none of [26, 45] is implemented into a real-time end-to-end system. Besides, these schemes require
users to upload their sensor data. In comparison, this paper presents a system in which the individual identifying
process is not dependent on uploading data. Moreover, our system uses transforms raw motion features to blur
behavior details thus protects user privacy.

7 CONCLUSION

This paper proposes a problem called Private Human Addressing and develops a fully operational real-time
prototype named PHADE to solve this problem. Without knowing users’ smartphone addresses, PHADE is able
to communicate with them relying on the motion patterns captured by cameras and using these patterns as
destination addresses. PHADE transforms the raw patterns using principal component analysis to diminish motion
details and meanwhile preserves their distinguishable characteristics. The smartphones then locally make their
own decisions on whether to accept a message or not. PHADE achieves reasonable address matching performance
and also provides privacy protection mechanisms to prevent motion leaks.
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