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Chain businesses have been dominating the market in many parts of the world. It is important to identify the optimal 
locations for a new chain store. Recently, numerous studies have been done on chain store location recommendation. 
These studies typically learn a model based on the features of existing chain stores in the city and then predict what other 
sites are suitable for running a new one.  However, these models do not work when a chain enterprise wants to open 
business in a new city where there is not enough data about this chain store. To solve the cold-start problem, we propose 
CityTransfer, which transfers chain store knowledge from semantically-relevant domains (e.g., other cities with rich 
knowledge, similar chain enterprises in the target city) for chain store placement recommendation in a new city. In 
particular, CityTransfer is a two-fold knowledge transfer framework based on collaborative filtering, which consists of the 
transfer rating prediction model, the inter-city knowledge association method and the intra-city semantic extraction 
method. Experiments using data of chain hotels from four different cities crawled from Ctrip (a popular travel reservation 
website in China) and the urban characters extracted from several other data sources validate the effectiveness of our 
approach on store site recommendation. 
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1 INTRODUCTION 
Chain businesses are dominating the market in modern cities, which usually locate in different areas of the 

city and can enhance the provision of high-quality and beneficial services for the citizens. One of the critical 
issues in chain business is to select locations for new outlets/stores of a chain enterprise, which may not only 
affect the chain store’s profit, but also impact the future development of the chain enterprise [5]. Thereby, an 
effective chain store recommendation system becomes necessary to chain enterprise managers. 

Traditionally, to make valuable suggestions, operators need to carry out questionnaire surveys to 
understand people’s needs and make detailed investigation to all the candidate places to learn their 
characteristics, e.g., traffic convenience, human flow, etc. Obviously, these traditional methods are time-
consuming and cannot adapt to the rapid development of the city automatically. 

Recently, the proliferation of big data in cities has fostered unprecedented opportunities to deliver 
intelligent urban services by leveraging data mining and machine learning techniques [14, 42]. Researchers 
thus resort to the data-driven approach to address the store site recommendation problem in urban 
environments. For example, quite a number of studies [8,18,19,26,27,39] explore the data from location-based 
social networks (LBSNs) to predict business locations [20,28]. Most of them typically learn a regression model 
based on the features of existing chain stores in the same city. However, when a chain enterprise plans to 
expand its market in a new city, it usually lacks enough data which can be directly referenced, known as the 
cold-start problem [6,24]. Existing works fail to address this problem. In this work, we aim to address this 
practical and interesting issue to learn a chain store recommendation system for the given chain enterprise in 
the target city by using a data-driven approach. 

To the best of our knowledge, the above mentioned issue has not been explored in existing studies. Taking 
insight of this problem, we find that though we do not have knowledge of the target chain enterprise in the 
target city, we do have information about its running in other cities. This endows us knowledge about the 
location bias of the chain enterprise. Furthermore, in the target city, there often exist similar chain enterprises, 
which can provide knowledge about the local features of local enterprises. In both cases, we can have rich 
‘foreign’ knowledge which can be transferred to enable chain store recommendation. We use the following 
scenario to illustrate this. 

Supposing that Home Inn (a popular economy hotel in China) would like to expand its market in a ‘new’ 
city Xi’an (a second-tier city in China). There exists no Home Inn in Xi’an, but there are many Home Inn sites 
in Beijing (a first-tier city in China). Furthermore, there are many stores of other similar economy hotel 
enterprises, such as 7 Days Inn and Hanting Inn in Xi’an. An interesting question arises: can we use the 
knowledge learned from Home Inn in Beijing and other economy hotel enterprises in Xi’an to identify the 
optimal sites for Home Inn startups in Xi’an? 

When transferring knowledge from other cities, there exists a problem that the training and testing data 
may have different feature and rating distribution [37], which cannot work well using traditional machine 
learning methods. However, transfer learning (TL) [30] has been proved to be an effective approach for 
knowledge transferring from different domains. For example, in the field of ubiquitous computing, it has been 
successfully used for human activity recognition (HAR) [38], air quality prediction [37], human mobility [11], 
and so on. However, existing studies of transfer learning only address one-fold knowledge transfer. They do 
not support the transferring of two-fold knowledge (inter-city and intra-city) as investigated in the above 
scenario. From another perspective, the problem to be solved in the above scenario is a typical 
recommendation problem. Among the numerous recommendation methods, collaborating filtering (CF) 
[6,13,22,35] has shown high performance in many recommendation systems. While traditional CF cannot be 
directly used to solve the above two-fold knowledge transfer problem, it has been proved easily-extensible to 
address complicated recommendation problems [17,22].  

In this paper, we combine collaborating filtering and knowledge transfer to address the two-fold 
knowledge transfer problem. This is not trivial and we are faced with at least the following challenges. 
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1) How to transfer target chain enterprise knowledge and target city knowledge to deal with the cold-start 
problem in chain store site recommendation?  

2) Data from different cities normally have different distributions in feature and rating spaces. Therefore, 
we cannot directly compare places located in two different cities, which is the second challenge. 

3) Local features extracted from multi-source datasets might be redundant and noisy, which can affect the 
performance on knowledge transfer and chain store site recommendation. 

To address these challenges, we propose CityTransfer, a two-fold knowledge transfer framework based on 
collaborating filtering. It supports chain store site recommendation in cold-start situations by leveraging both 
inter-city and intra-city knowledge transfer. In particular, our contributions are as follows. 

1) We present a new and practical ‘cold-start’ problem in optimal site recommendation. To address this 
problem, we propose a two-fold knowledge transfer framework, which significantly extends the SVD 
(Singular Value Decomposition)-based CF model to make it possible to transfer the enterprise bias knowledge 
from other cities, and also learn local characterizing features from similar enterprises in the same city.  

2) To bridge the discrepancy on feature/rating distribution between the source city and the target city, we 
divide each city into same-sized location grids (e.g., 500m*500m) and build correspondence between the grids 
by measuring the Pearson correlation coefficient over their features [1,3]. It is then used in an optimization 
function to generate a shared semantic space for both cities and make the location grids comparable between 
them. 

3) To ensure the features of each location grid preserve high-quality semantics, we use AutoEncoder 
[4,10,29] to construct original features of each location grid, which makes the new features become more 
robust and informative and further help improve the quality of chain store recommendation. 

We choose chain hotel enterprises as a case study to evaluate the performance of our framework. Multi-
source data of four different cities in China are collected for experiments, including chain hotel enterprise data 
from Ctrip 2, check-in data from Sina Weibo3 , and Point of Interests (POIs) data from Gaode-Map4 . 
Experimental results indicate that our approach outperforms baselines from many aspects. We also obtain 
some findings that can be used to steer better knowledge transfer among cities. 

2 RELATED WORK 

Our work is closely related to the following three areas: recommendation systems, optimal site 
recommendation, and knowledge transfer in ubiquitous computing, as summarized below. 

2.1 Recommendation Systems 
Recommendation systems have become increasingly popular in recent years, which have been utilized in a 

variety of application areas. Traditional recommendation systems could be distinguished into three different 
approaches [9]: rule-based filtering, content-based filtering, and collaborative filtering. 

Rule-based filtering [15] creates a user-specific utility function and then applies it to the candidate items. It 
is easy to fail due to the burden on user configuration. Content-based filtering is based on item contents and 
user preferences [31]. It tries to recommend items that are similar to those that a user preferred in the past. 
Collaborative filtering (CF) [34] uses the known preferences of a group of users to make recommendations or 
predictions of the unknown preferences for other users. A key advantage of the CF approach is that it does 
not rely on machine analyzable content. It has become one of the most successful and widely-used approaches 
to build recommender systems. 

                                                                    
2 http://hotels.ctrip.com/ 
3 http://open.weibo.com/wiki/ 
4 http://lbs.amap.com/ 
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There are generally two ways to build CF systems: memory-based methods and model-based methods [34]. 
Early CF systems, such as GroupLens [21], use the user-rating data to calculate the similarity between users or 
items and leverage them to make prediction/recommendation. However, there are several limitations, such as 
the fact that the similarity values are based on common items and therefore are unreliable when data are 
sparse. To overcome the shortcoming of memory-based CF algorithms, model-based CF approaches are 
investigated. It uses the rating data to estimate or learn a model to make predictions. Well-known model-
based CF techniques include Bayesian belief nets (BNs) CF models [34], clustering CF models [36], and 
Singular Value Decomposition (SVD) CF models [22]. However, such pure collaborative filtering cannot help 
in cold-start settings [33], where new users or new items exist. 

To address the cold-start problem in CF, additional information about users (user attributes, e.g. gender, 
age, geographical location, occupation) and items (item attributes, e.g. genres, product categories, keywords) 
should be used. Several hybrid recommender systems have been developed to tackle the cold-start problem by 
combining two or more recommendation techniques. For example, Schein et al. [33] propose the aspect model 
latent variable method for cold-start recommendation, which combines both collaborative and content 
information in model fitting. Based on all features in user and content profiles, Chu and Park [9] develop 
predictive bilinear regression models to provide accurate personalized recommendations of new items. Gantner 
et al. [12] describe a method that maps entity (e.g. new user or item) attributes to the latent features of a matrix 
factorization model. With such mappings, the factors of a matrix factorization model trained by standard 
techniques can be applied to the new-user and the new-item problem. 

Our work is inspired by the CF-based recommendation method. In particular, we view the optimal site 
recommendation as the multi-user, multi-item recommendation problem, where chain enterprises are viewed 
as ‘users’ and location grids are viewed as ‘items’. In the target city, we face the ‘cold-start’ problem for 
recommending sites for a new enterprise. Different from existing solutions for cold-start problems in CF, 
which combine both collaborative and content information for model fitting, we devote to transferring the 
knowledge of the target enterprise in a source city (where there are ratings for the target enterprise). However, 
due to the discrepancy between the source and target cities, the knowledge cannot be directly used in the 
traditional CF model. In our work, we significantly extend the SVD-based CF model to make it possible to 
transfer knowledge of the same enterprise from other cities, and also learn local characterizing features from 
similar enterprises in the same city. To achieve this, we build the transfer rating prediction model and use the 
inter-city knowledge association method to make the location grids in different cities comparable, i.e., 
representing them in the shared semantic space which can then be used in the prediction model for the target 
city. 

2.2 Optimal Site Recommendation 

Numerous studies [8,18,19,26,27,39] have been done on the recommendation of optimal sites for retail 
stores or public facilities. Most of them devote to building feature-based learning models, which first extract 
features from different sources, and then learn a regression model to recommend locations for the chain store 
in the same city. For example, Jensen [18] studies the diversity of retail store location patterns and investigates 
various features that may affect chain store performance. Geo-Spotting [19] investigates the predictive power 
of geographical features and mobility features on the popularity of retail stores in the city. Chen et al. [8] 
formulate the bike station placement issue as a bike trip demand prediction problem and propose a semi-
supervised feature selection method to extract customized features from the highly variant, heterogeneous 
urban open data to predict bike trip demand. ChainRec [26] proposes a supervised regression method for 
chain store placement recommendation considering its scale, where three types of features are used, including 
geographic features, commercial features, and scale-relevant features. Yu et al. [39] treat the shop type 
recommendation problem as a traditional recommendation task, and propose the bias-learning matrix 
factorization method for shop popularity prediction.  
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Our work differs from these existing studies in the following two aspects. First, the problem definition is 
different. The above studies give recommendations by exploring sufficient labelled training data in the same 
city, while we aim to address the site recommendation problem for an enterprise with no labelled data in the 
target city, i.e., the cold-start problem. Second, while there are no-labelled data in the target city, we want to 
leverage two-fold knowledge in the prediction model: local features that can be learned from similar 
enterprises in the same city, and enterprise bias that can be learned from other cities with rich data. To achieve 
this, we propose the two-fold knowledge transfer model founded on the matrix factorization-based CF model, 
and introduce the inter-city knowledge aggregation and intra-city semantic extraction methods to enable 
high-quality knowledge transfer. 

2.3 Knowledge Transfer in Ubiquitous Computing 
A major assumption in many data mining and machine learning algorithms is that the training and future 

data must be in the same feature space and have the same distribution. However, in many real-world 
applications, this assumption does not hold. For example, we sometimes have a classification task in one 
domain of interest, but we only have sufficient training data in another domain, where the latter data may be 
in a different feature space or follow a different data distribution. In such cases, knowledge transfer becomes 
important that can greatly improve the learning performance by avoiding expensive data labeling efforts. 
Transfer learning has emerged as a promising learning framework to address this problem. It tries to transfer 
the knowledge from some source tasks to the target task when the latter does not have enough training data 
[30]. 

There have been recently a few studies that leverage transfer learning to address the no-training-data issue 
in the ubiquitous computing field [11,37,38,41]. Earlier studies focus on indoor localization and activity 
recognition. For example, Zheng et al. [41] study the problem of transfer learning using a semi-supervised 
HMM for adaptive localization in an indoor environment. Wei et al. [38] propose the co-regularized 
heterogeneous transfer learning model to transfer the knowledge from social media platforms to sensors in 
human activity recognition. Quite recently, there have been studies about transfer learning in urban 
computing. For example, Fan et al. [11] present CityCoupling, which establishes an inter-city spatial mapping 
in one city as input and reproduces human mobility in another city. Wei et al. [37] propose the flexible 
transfer learning method for air quality prediction, which aims to transfer knowledge from a city with 
sufficient multimodal data and labels, to the cities with insufficient data and scarce labels. All of the above 
studies leverage knowledge transfer to solve the label scarcity problem in different fields. However, they are 
mainly limited to one-fold knowledge transfer, and they rarely explore transfer learning in the 
recommendation field. In our work, we want to transfer both local characterizing knowledge from similar 
enterprises in the target city and enterprise bias knowledge from the same enterprise in other cities, which is 
a new problem and is not addressed by traditional transfer learning methods. Alternatively, we are inspired by 
the SVD-based CF method in recommendation systems, where we view the enterprises in the same city as 
users and the location grids as items. The framework enables us to transfer local knowledge from similar 
enterprises in the same city. Furthermore, to address the cold-start problem in our framework, we leverage 
both inter-city knowledge association and intra-city semantic extraction methods to build a shared semantic 
space for inter-city knowledge transfer (considering that different cities have different feature and label 
distributions), i.e., transferring knowledge of the target enterprise from other cities with rich data. 

3 CITYTRANSFER: AN OVERVIEW 

3.1 Problem Formulation 
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We first give formal definitions of the main concepts as well as the problem of our work. A summary of the 
definition of notations used in our work is given in Table 1. 

Definition 1. A city is represented as a set of two-dimensional location grids, each of which has a size of κ m× κ m 
(e.g., κ = 500m). We consider two different cities in knowledge transfer. A source city s (like Beijing in the above scenario) 
has m1 grids, denoted as G(s) = {g1

(s),… , gm1
(s)}. For each grid gj

(s), we extract a feature vector fj 
(s)Î Rd. Similarly, a target city 

t (like Xi’an in above scenario) has m2 grids, denoted as G(t) ={g1
(t); …, gm2

 (t) }. We extract a feature vector fl
(t)Î Rd for each 

grid gl
(t). 

Definition 2. A chain enterprise is an enterprise that manages a number of hotel outlets located in different places.  
We consider two types of chain enterprises. A source chain enterprise (like Hanting Inn and 7 Days Inn in the above 

scenario) has stores in both the source city s and the target city t. A target chain enterprise (like Home Inn) only has stores 
in the source city s. Suppose that we have n chain enterprises, denoted as H = {h1,…, hn}. Without loss of generality, we 
consider hn as the target chain enterprise and the remaining {h1,… , hn-1} as the source chain enterprise. For a chain 
enterprise hi that has a store in a location grid gj 

(s) in the source city s, we calculate its rating rij 
(s) Î [0, 5], indicating the 

popularity of this store. As a result, we can denote the rating of all the chain enterprises H in the source city as R(s) = 
{rij

(s)}. Similarly, for a chain enterprise hi which has a hotel in a location grid gl
 (t) in the target city t, we also calculate a 

rating ril
(t) Î [0, 5] and the ratings of all the source chain enterprise H / hn in the target city can be denoted as R(t) = {ril 

(t)}.   
The CityTransfer problem: Based on the above definitions, we aim to use R(s) and R(t), together with the location grid 

features f j 
(s) and fl 

(t) , to predict the ratings for the target chain enterprise hn over the location grids in the target city t. 

Table 1. A summary of the definition of notations 

 

3.2 Data Collection and Analysis 
We choose chain hotel enterprise for a case study and collect data about two major stakeholders in our 

work: 1) Chain hotel enterprise data, including the profile information (e.g., name, location, and category) and 
all the reviews contributed by the consumers for each chain hotel. It should be noted that the number of 
reviews for a chain store can to some extent reflect its popularity, and thus we use it as the ground truth to 

Notation Description 
s, t Source city, target city 
G(s) = {g1

(s),… , gm1
(s)} 

G(t) = {g1
(t),… ,gm2

(t)} 
The set of grids in source or target city. 

fj 
(s), fl 

(t) The set of original features in source or target city. 

H = {h1,…, hn} 
The set of all chain enterprises. hn is the target enterprise,  
H/hn is source enterprises.  

R(s) = {rij 
(s)} 

R(t) = { ril 
(t)} 

The set of ratings (ratings matrix) in source or target city. 
 rij is the ratings for hi in gj, rij= [0,5] 

u = {ui} The matrix of chain enterprise, ui is the vector of u about hi 

v(s)
 = {vj}, v

(t)
 = {vl} 

The matrix of location grids in source or target city,  
vi is the vector of v in gj, it is also the vector of new feature 
constructed by AutoEncoder. 

bi The bias of chain enterprise hi,  
ej

(s),el
(t) The bias of location grid gj in source or target city. 

W(s),W(t), yt(s)
, yt(t) The parameters of AutoEncoder[25]. 

∆ = {(gj 
(s) , gl 

(t)) } The set of all the location grid pairs between two cities.  
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evaluate the prediction result. 2) Urban characterizing data, including POIs, check-ins, and house price. It is 
used to characterize the features of different places of a city and further understand the impact of enterprise 
bias and local characters on chain enterprise site selection. 

A summary of the multi-source data collected for four major cities (Beijing, Shanghai, Xi’an, and Nanjing) in China is 
given in Table 2. (1) The chain hotel enterprise data is crawled from Ctrip (a popular travel reservation website in China), 
where three popular economic chain hotels, namely Hanting Inn, 7 Days Inn, and Home Inn, are chosen for the study. We 
view them as similar chain enterprises in this work. (2) The POIs have 12 different categories (e.g., education, scenic spots, 
sports, commercial spots, financial services, and transport facilities), and they are crawled from GaoDe Map (one of the 
most popular digital map service providers in China). (3) The check-in data is collected from the geo-tagged posts in Sina 
Weibo (the most famous microblogging service in China) of the four cities, dating from Aug. 1 to Nov. 30 in 2015. (4) The 
house price for each city is crawled from SouFang5 (a popular website for real estate in China).  

For each location grid, we treat it as an instance and extract features from multiple data sources. We 
measure the business value of a location grid to a chain enterprise by counting the average number of reviews 
for each chain store of the enterprise within the location grid. To ensure prediction quality, the business value 
is finally normalized to a rating score within the range of [0, 5]. As discussed earlier, the rating score is used as 
the ground truth for the recommendation model. 

Table 2. A summary of the multi-source data collected for four major cities in China. 

 

Table 3. The impact of enterprise bias (for Hanting) on site selection in different cities (PCC). 

Beijing Shanghai Xi’an Nanjing 
Scenic spots 0.69 Scenic spots 0.33 Government 0.42 Education 0.59 

Medical 0.62 Transport 0.24 Life 0.35 Scenic spots 0.52 
Government 0.61 Financial 0.23 Medical 0.26 Commercial 0.51 

Financial 0.61 Medical 0.23 Financial 0.25 Government 0.50 
Sport 0.59 Commercial 0.22 Commercial 0.25 Public facility 0.46 

Commercial 0.58 Sport 0.20 Education 0.24 Financial 0.46 
 
                                                                    
5 http://www.fang.com/ 

Sources  
Cities 

Beijing Shanghai Xi’an Nanjing 
Hanting Inn Hotels 123 147 69 73 
7 Days Inn Hotels 160 46 59 46 
Home Inn Hotels 179 156 189 57 

Hanting Inn Reviews 18195 22875 8415 10020 
7 Days Inn Reviews 31215 8610 8985 9915 
Home Inn Reviews 35310 45146 14956 16095 

POIs 348863 444703 143397 166648 
Check-ins 21222070 16928489 3011698 3410412 

House price 55030 50224 7758 24781 
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3.2.1 The impact of enterprise bias on site selection in different cities. To understand the impact of chain 
enterprise bias on site selection, we measure the Pearson Correlation Coefficient (PCC) between the rating 
score of each location grid and the number of POIs (of different categories) in the grid. The top six correlated 
POI categories for the Hanting Inn enterprise in four cities are given in Table 3. We can find that for most of 
these cities, scenic spots, financial services, government agencies, and commercial institutions are of high 
correlation on site selection. It indicates that there is enterprise bias on site selection in different cities and we 
can transfer the enterprise bias knowledge from the source city to the target city. However, we also find that 
there are certain differences in terms of the members of highly-correlated POI categories and the correlation 
strength among them. For example, the POI category ‘education’ is of high relevance to Xi’an and Nanjing 
while not for the other two cities. Therefore, only transferring the knowledge from a source city is not 
sufficient for accurate rating prediction. 

 
3.2.2 The impact of local features on site selection for similar enterprises. To understand the impact of local 

features on site selection, we propose the co-occurrence ratio (COR) between the target enterprise and the 
source enterprise. For example, if we assume Hanting Inn and 7 Days Inn as the target enterprise and the 
source enterprise, respectively, we calculate the COR for Hanting to 7 Days, i.e., COR(Hanting, 7 Days), as the 
ratio of the number of stores of Hanting that co-locates with 7 Days stores in any location grids to all Hanting 
stores in the city. The COR results for different target-source enterprise pairs in Beijing and Shanghai are 
given in Table 4. We can find that the COR is higher than 0.5 for most target-source enterprise pairs, which 
indicates that there is significant correlation on site selection for similar enterprises in the same city. This 
motivates us to transfer the local knowledge from similar enterprises in the target city. However, we also find 
that for some enterprise pairs, the COR is low and thus only local knowledge is not enough for accurate site 
recommendation. 

Table 4. The impact of local features on site selection for similar enterprises (COR). 

 
Beijing Shanghai 

 
Hantin

g 
7 Days Home Inn Hanting 7 Days Home Inn 

Hanting - 0.86 0.83 - 0.3 0.62 

7 Days 0.58 - 0.65 0.75 - 0.79 

Home Inn 0.70 0.82 - 0.72 0.37 - 

 
3.2.3 The difference of feature/rating distribution in different cities. Data from different cities may have 

different distributions in feature and rating spaces. To understand this in our problem, we create the fitting 
curve of rating scores (as discussed earlier in this section) and features under different settings. As shown in 
Fig. 1, the distribution of ratings of Hanting in four different cities is different (Fig. 1a), and the distribution of 
ratings for the three enterprises in the same city (i.e., Beijing) is quite different (Fig. 1b).  We can also find in 
Fig. 1(c) that the distribution of house price (i.e., a kind of feature) is also quite different in different cities. 
Therefore, we need to build a shared semantic space to make the features/ratings comparable between 
different cities and enable inter-city knowledge transfer. 
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(a) Grid Rating                                  (b) enterprise Rating                                  (c) House Pring 

Fig 1. The difference of feature/rating distribution in different cities. 

 

3.3 The CityTransfer Framework 

The framework of CityTransfer is given in Fig. 2, which consists of three modules: the data preparation 
module, the CityTransfer learning model, and the recommendation module. 

Data preparation. We collect multi-source data for both the source city and the target city, and then 
divide each city into a set of two-dimensional grids. For each grid, we extract useful features, including 
geographic features and commercial features. More details about the features will be given in Section 4. 

The CityTransfer learning model. It consists of three major components: 
1) Transfer Rating Prediction Model. It predicts the rating of location grids to the target chain enterprise by 

extending the SVD-based CF algorithm [13,22], by which we can learn local characterizing knowledge from 
similar enterprises in the target city.  

2) Inter-City Knowledge Association. To enable enterprise bias knowledge transfer, we compute the Pearson 
correlation coefficient among the location grids in the source and target city, and use an optimization function 
to build a shared semantic space to address the incomparability issue between the location grids of different 
cities.  

3) Intra-City Semantic Extraction. For each city, the local grid features extracted from multi-source datasets 
are redundant and noisy. This component extracts high quality semantics by using AutoEncoder [4,10,29] to 
reconstruct original features and improve the knowledge transfer performance. 

Finally, we combine the above three aspects as the Joint Optimization Algorithm to predict the rating for a 
target enterprise in the target city. 

Recommendation. We rank ratings over all location grids for the target enterprise in a target city and 
recommend top N places accordingly. 
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Fig. 2. The CityTransfer Framework. 

4 FEATURE EXTRACTION 
As discussed earlier, similar to previous urban computing studies [37, 40], we divide the city (both source 

and target) into a set of location grids, and extract a set of features to characterize each grid. Specifically, the 
extracted features are classified into two categories: geographic features (e.g., diversity, human flow, traffic 
convenience, POI set) and commercial features (density, competitiveness, complementarity, and house price) 
[19, 26].  

4.1 Geographic features 

The performance of chain stores is closely related to the spatial characteristics of the place where the store 
resides. We use the following geographic features to characterize it. 

Diversity. It reflects the grid’s spatial heterogeneity. We refer to Nc as the number of POIs of category c (c ÎG, G is 
the set of all the POI categories mentioned in Section 3) in the grid gj. Diversity is defined as Eq. (1) based on the 
information entropy theory.   

 
ÎG

= - ´å
( ) ( )

log
( ) ( )

div c c
j

c

N j N j
f

N j N j
                                                                    (1) 

Human flow. It reflects the grid’s area popularity. We measure it based on the total number of check-ins in grid gj, as 
define in Eq. (2). Here, CH refers to all check-in places, and place p is a check-in point that falls in location grid gj.  

 ( )( )HF
j j

p CH
f num p p g

Î

= - Îå                                                                     (2) 

Traffic convenience. It reflects the location grid’s traffic convenience. We use public transportation 
trans={t1, t2 ,t3} (buses, subways, and parking lots) to characterize it. Specifically, num(ti ) is the number of 
stations for ti (ti Î trans) in grid gj, which is defined as Eq. (3). 

( )
i

traffic
j i

t trans
f num t

Î

= - å                                                                         (3) 

POI set. It combines all the categories of POIs in location grid gj , which is defined as Eq. (4). Here, f c (c Î 
G) is the number of POIs of category c in the grid.  
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{ }1 2, ,..., nc c cPOI
j j j jf f f f=                                                                               (4) 

4.2  Commercial features 

To characterize the commercial features of a location grid, we extract the following commercial features.  
Density. It is an indicator of the popularity of a target chain enterprise, calculated as the number of 

stores of this enterprise in a grid, as formulated in Eq. (5).  

=den
j tarf N                                                                                 (5) 

 
Competitiveness. We assume that competition mostly comes from the nearby stores with the same POI 

category, and we define the competitiveness feature as Eq. (6). Here, Nt (r) represents the number of chain 
stores of the same category in grid gj, and Nc/tar is the number of chain stores of the same category except the 
target enterprise’s stores.  

/com c tar
j

c

Nf
N

= -
					                                                                        (6)  

  Complementarity.  We firstly measure the complementary coefficient between different POI category 
pairs as Eq. (7). After that we compute the aggregated complementarity based on the POI category distribution 
of location grid gj as Eq. (8).  

'
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                                                                        (7) 
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ÎG
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where ( , ')setN t t  is the number of co-occurrences of category pair (𝑡, 𝑡#) in the same grid; ( 1) / 2N NG G - refers 

to the total number of different category-pairs. Njt’ is the number of t’ that appears in grid gj, and 't
N is the 

average number of POIs of category t’ that appear in all location grids. 
  House price. For each location grid, we use the average price of all collected housing points within this 

grid as its house price feature.  
HP

if hp=                                                                                   (9) 

5 CITYTRANSFER: DETAILED DESIGN 
To address the cold-start problem in chain store site recommendation, CityTransfer significantly extends 

the SVD-based CF model to enable two-fold knowledge transfer. It consists of three major components: 
Transfer Rating Prediction Model, Inter-City Knowledge Association and Intra-City Semantic Extraction. We first 
describe each of the three components and then present the proposed joint optimization algorithm. 

5.1 Transfer Rating Prediction Model. 

To leverage chain enterprise features and location grid features for chain location recommendation, we 
introduce chain enterprise matrix u and location grids matrix v and use them to predict the rating of each 
candidate location. Specifically, ui Î R

k is a vector of u, which represents the feature of one chain enterprise, vj  
Î Rk is a vector of v, which represents the feature of a grid. Founded on the SVD-based CF model [21], we 
establish connections between u and v by analyzing past behaviors of source and target enterprise in each 
city. That is, we first divide the rating matrix (R(s)

 or R(t)) into u and v for each city, and then use the product 
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of ui and vj to predict the rating of gj. As the rating scale might be different for different chain enterprises and 
different location grids, we introduce the bias for a chain enterprise as bi and the bias for location grids as ej, 
and combine them with ui and vj to improve the quality of rating prediction.  

For the chain enterprise, the feature ui and the bias bi are invariant across different cities, as a given chain 
enterprise often has a fixed market positioning and location preference. Thereby, we can transfer chain 
enterprise knowledge from source city to the target city. In contrast, for the location grid, the feature vj and 
the bias ej of different cities are not the same. When transferring knowledge from the source to the target city, 
there exists the problem whether vj

(s) and vj
(t) are comparable, and we will address this issue based on Inter-

City Knowledge Association (presented in Section 5.2). Therefore, we predict the rating for hi ÎH in the source 
city using Eq. (10).  

( )
( ) ( )

s
s T s

ij i j i jr b e u v
Ù

= + +                                                                        (10) 

Similarly, we predict the rating for a source chain enterprise hi, "i =1,…, n - 1, in the target city t with Eq. 
(11). 

( )
( ) ( )

t
t T t

ij i j i jr b e u v
Ù

= + +                                                                        (11) 

Finally, to minimize the prediction error, the optimization objective is defined as Eq. (12).  
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where λ1 > 0 is a trade-off parameter. 

5.2 Inter-City Knowledge Association. 
As presented in Section 3.2, there exists discrepancy between the source city and the target city, i.e., the 

distribution diversity of features and ratings [37]. Therefore, we cannot directly compare two location grids in 
different cities. To make the location grids to be comparable across different cities, we propose to actively 
build correspondence between two cities and represent them in a shared semantic space. After the conversion, 
v(s) and v(t) become comparable, and we can transfer knowledge from the source to the target city.  
Specifically, to build the correspondence between gj

 (s) and gl 
(t), we consider measuring the Pearson correlation 

coefficient [1,3] between fj 
(s) and fl 

(t)  as defined in Eq. (13).  
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where 
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f f
k =

= å  and 
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,1

1t k t
l ij i

f f
k =

= å . Based on the correlation, to build the grid-grid 

correspondence, for each location grid gj
 (s) in the source city s, we pick out top γ location grids gl

 (t) in the 
target city t. Similarly, for each location grid gl

 (t) in the target city t, we pick out top γ location grids gj
 (s) in the 

source city. In total, we denote the set of all the location grid pairs between two cities as ∆ = {(gj 
(s) , gl 

(t))}. 
To make each pair of location grids from two cities be similar in the shared semantic space, we need to 

optimize the function described in Eq. (14).  
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2
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5.3 Intra-City Semantic Extraction 

As explored in other urban computing studies [8, 37], local grid features extracted from multi-source 
datasets are redundant and noisy. For example, Figure 3 gives the Pearson Correlation Coefficient (PCC) 
among different feature pairs in the Beijing city, and we find that there is certain correlation among various 
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POI categories, human flow, traffic convenience features, and so on. The intra-city semantic extraction 
component is to reduce the impact of redundancy and noisy and improve the prediction performance.  

 

Fig. 3. The Pearson correlation coefficient (PCC) among diverse features. 

To ensure each location grid vj is robust and informative, and preserve more semantics, we reconstruct the 
location grid’s original features fj to its corresponding vj. Specifically, we use AutoEncoder [4,10,29] to 
construct vj from fj. In general, there can be multiple layers in the network architecture of AutoEncoder. For 
simplicity, in this paper we use a three-layer AutoEncoder as an example to illustrate how we construct vj 
from its corresponding fj. In particular, we give the formal definition as Eq. (15) and Eq. (16), respectively.  

( ) ( ) ( ) ( )
1( )s s s s

j jv W f ys= +                                                                (15) 
( ) ( ) ( ) ( )

1( )t t t t
j jv W f ys= +                                                                 (16) 

where W (s) Î Rd∗k, W (t) Î Rd∗k, t1
(s) Î Rk and t1

(t) Î Rk are parameters; σ(z) is a neural activation function, 
which returns a vector of sigmoid function value. We reconstruct fj from vj by a nonlinear function using the 
tied parameters W (s) and W (t), as defined with Eq. (17) and Eq. (18), respectively.  
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where y2
(s) Î Rd and y2

 (t)Î Rd are also parameters. Finally, to minimize the reconstruction error, we request 

fj to be close to 
^

jf  which is defined as Eq. (19).  
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5.4  The Optimization Algorithm 
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Based on the above components, we first present the joint optimization function. We denote Θ = {bi, ej
(s), 

el
(t), ui, W(s), W(t), yt(s)

, yt(t)| i=1,..,n; j=1,…m1; l=1,…m2; t=1,2}. To avid overfitting, we introduce a 
regularization term as Eq. (20).  

1 2 22 22 222 ( )2 ( )2 ( ) ( ) ( ) ( )

1 1 1 1 1 1

mn n n
s t s t s t

i i i i
i i i i

R b e e u W W y y
t t

t t= = = = = =

= + + + + + + +å å å å å å                         (20) 

In all, we combine O1, O2, O3 and R as the final objective function. We optimize Θ by minimizing z  in Eq. 
(21).  

2 3 4
1 2 3

1
2 2 2 2
O O O Rl l lz = + + +                                                               (21) 

where λ2 > 0, λ3 > 0 and λ4 > 0 are trade-off parameters. 
We implemented our proposed methods based on Theano6, and choose stochastic gradient descent (SGD) 

[40] as the optimization methods. Once Θ is learned to optimization, we can use Eq. (10) to predict the rating 
in each location grid of the target city t for the target hotel chain hn.  

To conclude this section, we give the entire pseudo-code of the CityTransfer algorithm in Algorithm 1, 
which includes a training stage and a testing stage. The inputs of our model include feature vector fj and 
rating matrix R from both source and target cities. The training stage (line1~8) is responsible for building grid-
grid correspondence, initializing Θ and optimizing Θ by minimizing in Eq. (20). In the testing stage (line 9~13), 
the rating for the target chain enterprise hn in target city t is predicted with the overall optimization function. 

 

 

6  EVALUATION AND DISCUSSION 
We first give a summary of the experiment purposes to evaluate the performance of CityTransfer, based on which a set of 

baselines are defined. We then present the experiment settings as well as the significant experimental results. Finally, we 

                                                                    
6 http://deeplearning.net/software/theano/ 

ALGORITHM 1: The CityTransfer Algorithm 
Input: Source city: G(s), each of which has a feature vector fj

(s) (j=1,…,m1),  
ratings in source and target chain enterprises H ,which is presented as R(s)

 ={rij}  
  Target city: G(t), each of  which has a feature vector fl

(t) (l=1,…,m2),  
ratings in source chain enterprises H/hn, which is presented as R(t)= {ril} 

Output: Rating predictions for hn over G(t) in target city. 
1. % Training stage  
2.     % build actively  grid-grid correspondence; 
3.     for all l =1,…,m2 do 
4.            Compute the correlation between fj

(s) and any fj
(t) by Eq. 13; 

5.      based on the correlation scores, choose the top g grids gj
(s) for the grid gl

(t) and add (gj
(s), gl

(t)) into D; 
6.     end for 
7.     Initialize Θ; 
8.     Use Theano to optimize Θ by minimizing z in Eq. 21; 
9. % Testing stage 
10.    for all l=1,…,m2 do 
11.          Construct the location grid feature vj

(t)
 by Eq.16; 

12.          Predict the rating  by Eq. 11;    

13.    end for 
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make a discussion of the deep insights and limitations of our work. The experiments are based on the datasets described in 
Section 3. 

6.1  Experiment Purposes and Baselines. 
The successful of CityTransfer relates to several different aspects, and we present the following purposes 

for experiment design. 
l We firstly compare the performance of CityTransfer with empirical methods, where certain important 

factors may be considered in site selection, such as human flow, traffic convenience, house price, etc. 
This helps us understand the usefulness of our approach regarding frequently-used empirical approaches. 

l The unique feature of CityTransfer largely depends on its two-fold knowledge transfer framework. We 
wonder whether the transferring of both inter-city and intra-city knowledge performs better than single-
fold knowledge transfer, i.e., only transferring enterprise bias knowledge from a source city or local 
characterizing knowledge from similar enterprises in the target city. 

l The CityTransfer framework consists of three major components, and a joint optimization function is 
used to combine them. The question is whether each component plays important roles in the whole 
framework. In other words, we should investigate the effects of the inter-city knowledge association and 
the intra-city semantic extraction modules. 

l For a target city, there could be several candidate source cities to be chosen for knowledge transfer. The 
following questions are thus interesting to be investigated: Are there significant performance differences 
when choosing different source cities? Is there prior knowledge that can be leveraged to steer source city 
selection?  

l For a site recommendation problem, there might be several candidates to be chosen in practice. The geo-
distribution of them can be different in the city, e.g., in a centralized manner or in a scattered manner. We 
thus want to validate the performance of our framework under diverse real-world settings. 

Based on the above experiment purposes, we define and adopt the following six baselines for comparison.  
1) Empirical selection (ES), which recommends optimal locations based on certain significant features in 

the target city, such as the human flow, traffic convenience, and house price. In particular, we use the ranking 
of location grids based on the selected factor/feature (e.g., human flow) as the ranking result for site 
recommendation. 

2) Inter-city-transfer (INTER_T), which only transfers knowledge about the target chain enterprise from 
the source city to the target city. It learns a regression model for the target chain enterprise in the source city, 
and then uses this model in the target city to score the candidate places for target chain enterprise 
recommendation. 

3) Intra-city-transfer (INTRA_T), which only transfers knowledge about similar chain enterprises in the 
target city. It learns a regression model about similar enterprises in the target city, and then uses it to do 
location recommendation for the target enterprise.  

4) Matrix Factorization (MF), which only uses the SVD-based CF method to predict ratings [2,23,35]. It 
omits the incomparable (i.e., distribution diversity of labels and features) nature between cities and directly 
‘employ’ the labelled-instances from a source city to address the cold-start issue. Therefore, we only use O1 as 
the objective function to be optimized. 

5) MF& Semantic Extraction (MF_SE), which uses AutoEncoder to preserve more semantics, and adds it 
to the matrix factorization method for rating prediction. In other words, we use O1 + O2 as the optimization 
objective function. 

6) MF& Knowledge Association (MF_KA), which firstly builds the correspondence between the location 
grids of two cities by measuring the Pearson correlation coefficient, and then introduces it to the matrix 
factorization method for rating prediction. In this way, the location grid features are comparable across 
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different cities, and we can transfer knowledge from the source city. In a word, we use O1 + O3 as the 
optimization objective function. 

6.2  Experiment Settings 
6.2.1  Parameter setting and training. The CityTransfer models are learnt by optimizing the loss function of 

Eq. (20). We use a pre-learning scheme to determine the initial values of parameter W and b, and other model 
parameters are learned using SGD and AutoEncoder. Based on the empirical knowledge learned from previous 
studies [8,37,42] and our experiments, we set the location grid size to 500m*500m in the experiments, which is 
not too small that has insufficient features nor too big that results in less labelled instances. Based on a large 
number of experiments, we find that the best performance can be achieved when the number of hidden layers 
(or latent features) in AutoEncoder is 8-10 in most cases, and we set it to ‘9’ in the following experiments. The 
learning rate (LR) decay method [4, 10] is used in SGD for LR adjusting. For trade-off parameters, we try 
different pairs of λi (i = 1,2,3,4), and employ the cross-validation method [1] to identify the best pair. Finally, 
we find that λ1 =1, λ2 =0.5, λ3=0.5, λ4= 0.025 perform the best mostly and use them in the experiments. The 
features have different range of value and, to improve learning performance, we normalize the feature values 
within the range of [0, 1]. For each experiment, we repeat it 1,000 times and use the average value as the final 
result. 

6.2.2  Evaluation metrics. As rating prediction is a typical regression problem, we employ the often-used 
metric RMSE (Root Mean Square Error) [16] for result comparison. Furthermore, as a ranking-based site 
recommendation problem, we assume that there could be several candidate places to be chosen from, and the 
output is to make a ranking among them for recommendation. In this way, we also adopt the metric that is 
generally used in ranking algorithms, namely NDCG (Normalized Discounted Normalized Gain)[18], defined 
by Eqs. (22) and (23).  

@ DCGNDCG K
IDCG

=                                                                    (22) 

 

2 2log

n
i

i
i

relDCG rel
i=

= +å                                                                   (22) 

As explored in other urban computing studies [8, 37], local grid features extracted from multi-source 
datasets are redundant and noisy. For example, Figure 3 gives the Pearson Correlation Coefficient (PCC) 
among different feature pairs in the Beijing city, and we find that there is certain correlation among various 
POI categories, human flow, traffic convenience features, and so on. The intra-city semantic extraction 
component is to reduce the impact of redundancy and noisy and improve the prediction performance. 

Here, K represents the number of candidate places to be ranked, and it is set to ‘10’ in the experiments. We 
use R to represent the predicted ranking list, and R’ to denote the real ranking list. DCG is the discounted 
cumulative gain of R, and IDCG is the DCG value of R’. reli is the rating score of i-th object in the ranking list. 

6.3 Experimental Results 
Having depicted the experiment settings and baselines, we present the experimental results regarding the 

four experiment purposes given in Section 6.1. 
6.3.1 Comparing with empirical selection methods. We choose Hanting Inn as the target company, and use 

the ES method (presented in Section 6.1) that leverages local features for site recommendation as the baseline. 
The performance under six different features for the four different cities is given in Table 5.  We can find that 
the average NDCG value for each city is ranging from 0.2 to 0.5, which is not high. The features perform 
differently for different cities, for example, human flow performs poor in Shanghai but well in Nanjing. Over 
the six features, scenic spot, commercial spot, and traffic convenience perform better than other features. 
However, as shown in Fig. 4, CityTransfer largely outperforms ES on Hanting recommendation. For example, 
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for Xi’an, the NDCG value increases from an average of 0.28 for ES to 0.85 by using CityTransfer. The results 
indicate that by leveraging two-fold knowledge transfer, our approach is much better on site recommendation 
than empirical selection methods. 

Table 5. The performance of empirical selection methods (NDCG@10). 

Feature Shanghai Beijing Xi’an Nanjing 
Scenic spot 0.61 0.42 0.26 0.48 

Commercial spot 0.55 0.42 0.28 0.46 
Traffic convenience 0.52 0.41 0.36 0.43 

POI diversity 0.60 0.37 0.26 0.41 
Human flow 0.27 0.30 0.30 0.52 
House price 0.48 0.45 0.23 0.48 

Average 0.50 0.39 0.28 0.46 
 

6.3.2 The usefulness of two-fold knowledge transfer. To understand the usefulness of two-fold knowledge transfer, we 
compare CityTransfer with two baselines: Inter-city-transfer (INTER_T) and Intra-city-transfer (INTRA_T). We assume 
Beijing as the source city, and Shanghai, Xi’an, and Nanjing as three target cities. We can find in Fig. 4 that CityTransfer 
outperforms the two baselines in all target cities for three different enterprises (around 0.7-0.85 for NDCG@10, and the 
relatively lowest RMSE value). It indicates that transferring both enterprise bias knowledge from source cities and local 
characterizing knowledge from the target city is effective on chain enterprise site recommendation. In other words, the 
two-fold knowledge facts are complementary and they together improve the recommendation performance.  

 

(a) Hanting 
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(b) 7 Days 

 

(c) Home Inn 

Fig. 4. The performance comparison of one-fold and two-fold knowledge transfer. 

We can also find that Intra-city-transfer (INTRA_T) performs better than Inter-city-transfer (INTER_T) in 
most cases. The reason could be that INTRA_T transfers more local characterizing knowledge which may play 
an important role in site recommendation. However, when we recommend for 7 Days Inn in Xi’an, INTER_T 
shows better performance in comparison with INTRA_T. Overall, both INTER_T and INTRA_T have their 
own advantages, which are critical to be integrated to improve the recommendation performance. 

6.3.3 The effectiveness of inter-city knowledge association and intra-city semantic extraction. To address the 
discrepancy of feature and rating distribution, we propose the inter-city knowledge association method. To 
deal with the redundancy and noisy issues caused by extracting features from multi-source urban data, we 
develop the intra-city semantic extraction method. In order to evaluate the effectiveness of these proposed 
methods, we compared CityTransfer with three baselines: MF, MF_SE and MF_KA. In the experiment, we 
choose Beijing as the source city and Shanghai as the target city. 

Table 6. The effectiveness of inter-city knowledge association and intra-city semantic extraction. 

 Hanting Inn 7 days Inn Home Inn 
 NDCG     RMSE NDCG     RMSE NDCG     RMSE 

MF 0.663 1.469 0.652 1.592 0.628 1.435 
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MF_SE 0.683 1.413 0.788 1.098 0.736 1.346 
MF_KA 0.741 1.689 0.623 1.716 0.782 1.735 

CityTransfer 0.769 1.548 0.812 1.205 0.701 1.261 
 

The results shown in Table 6 indicate that compared to MF, there is around 15-20% performance 
improvement on NDCG@10 by using CityTransfer. The RMSE value is to some extent reduced by using 
CityTransfer. The reason is mainly that MF omits the incomparable nature between cities and the learning 
process is based on original, redundant features. We also find that by additionally considering inter-city 
knowledge association (MF_KA) or intra-city semantic extraction (MF_SE) over MF can significantly improve 
the NDCG@10 performance. The results also indicate that there could be slight difference on performance 
improvement for MF_KA and MF_SE in different tasks, but a combination of them (CityTransfer) usually 
results in better results. It should be noted that NDCG and RMSE results sometimes conflict. There are two 
possible reasons. First, the two evaluation metrics cover different aspects: RMSE estimates the error between 
the predicted value and the true value (of one site), and NDCG calculates the difference between two ranked 
lists (of a list of candidate sites). Therefore, the changing of them may not coincide under different experiment 
settings. Second, the ratings of some candidate sites may be similar; so even though the RMSE value is small, 
the predicted ranking order of the sites can be of significant difference. This may also lead to conflicts 
between NDCG and RMSE results. Finally, as the site recommendation problem in our work is based on 
candidate site ranking, NDCG value can better present the performance of different approaches. 

6.3.4 The performance of knowledge transfer from different source cities. To evaluate the performance of 
different source cities, we treat Beijing or Shanghai as the source city, and Xi’an or Nanjing as the target city, 
respectively. From Table 7 and 8, we have the following observations. Overall, as the source city, Beijing 
performs better than Shanghai on knowledge transfer, the reason of which could be that Beijing has more 
chain hotels for the three chain enterprises. When we treat Xi’an as the target city, we find that the 
performance of transferring from Beijing is a bit better than Shanghai, the reason might be that both Beijing 
and Xi’an are located in north China and have similar geographical features. When the target city is Nanjing, 
transferring from Shanghai performs better. The reason is similar, as Nanjing is geographically close to 
Shanghai.  

 Table 7. The performance of transferring from different source cities to Xi’an (NDCG@10) 

 

Table 8. The performance of transferring from different source cities to Nanjing (NDCG@10) 

 

Source City Hanting Inn 7 Days Inn Home Inn 
Beijing 0.859 0.826 0.814 
Shanghai 0.729 0.798 0.729 

 

Source City Hanting Inn 7 Days Inn Home Inn 
Beijing 0.754 0.821 0.764 
Shanghai 0.801 0.848 0.765 
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To sum up, the knowledge transfer among different city pairs generally performs well, with the NDCG@10 
value bigger than 0.7. However, carefully choosing source cities can to some extent improve the performance. 
There are several common factors that could be useful for source city selection: First, the source city should 
have more instances of the target enterprise. Second, the source city should better be geographically close to 
the target city, which usually represents higher city similarity. Data-driven urban profiling has also become a 
hot research area in recent years [25,32]. We can also leverage their approaches to intelligently measure the 
similarity of different city pairs for source city selection.  

6.3.5   The impact of different distribution of candidate grid sets. In the above experiments, we randomly 
sample location grids (the number is ‘10’) as the candidate set for ranking. However, in practice, the candidate 
grids to be recommended (for opening a new store) may follow different distribution patterns. In other words, 
the places available (to be rent or sold) for opening new stores in a city can have different geo-distributions. 
Here we want to study the recommendation performance under different distribution of candidates. In 
particular, we study three different patterns based on the location grid’s geographical distribution: centralized 
(e.g., all candidates come from the central business district area), scattered (e.g., the candidates are within 
different areas of the city), and random. We choose Beijing as the source city and Shanghai as the target city 
in the experiments. Because 7 Days Inn in Shanghai has a small number of stores, we only consider Hanting 
Inn and Home Inn in the following experiment. 

 
Fig. 5. The performance of different candidate choosing. 

We can observe from Fig. 5 that our work generally performs well for different distribution of candidate 
grid sets. It can also be observed that centralized candidate set performs worse than the other two settings. 
The reason might be that the feature variance among different grids under the centralized distribution (e.g., all 
candidates locates in geo-closed areas) could be quite small, the prediction value is thus similar and the 
ranking result could be error-prone. For the scattered setting, the candidates are far from each other and may 
have large distance over their feature vector, and thus results in better ranking performance.  

6.4    Discussions 
Having presented the methods and evaluation results, we give a deep discussion of our work and present 

the limitations to be improved in the future work. 
Learning with multi-source urban data. AutoEncoder is used for significant feature extraction and noise 

elimination. It should perform better when working with richer data. Beyond the urban data sources used in 
the present paper, we intend to investigate the usage of more data sources (e.g., taxi trajectory data, geo-
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tagged microblogging posts) about urban dynamics. We believe that the performance of our approach can be 
further improved with the usage of more data sources. 

The data insufficiency issue. The current work assumes that different cities have equivalent available 
data sources for ranking prediction. However, in some cases we may have enough data in a big city (e.g., 
Beijing) but this type of data is insufficient or even missing in another city (e.g., Xi’an). We are planning to 
consider the data insufficiency or data missing issue in the future work. 

System implementation and intelligent transferring. The experiments indicate that for different cities, 
the performance of knowledge transfer differs, mainly because of distinct city characteristics and the richness 
of data. Therefore, we will study in depth the effective patterns and develop system support for intelligent 
knowledge transferring. Several general guidelines and approaches have been discussed in Section 6.3.4. 

Ground truth and experiments for other chain enterprises. In our work, the business performance of a 
location grid for a chain enterprise (i.e., the ground truth for the learning model) is reflected by the average 
number of reviews for the chain stores of the enterprise in this grid. The framework could be more accurate if 
we can obtain the operational data from chain enterprises. Furthermore, we use chain hotels as a case study, 
and we plan to collect data about chain restaurants (e.g., KFC, Starbucks) which have wider distribution and 
bigger number of stores to validate our work in the future. 

The extension and usage of the CityTransfer model to other applications. CityTransfer is a two-fold 
knowledge transfer model. Although our approach is proposed for optimal site selection, it is applicable to 
deal with different problems of chain business, such as pricing, product positioning, marketing strategy, 
targeted advertising, activity organization, etc. For other problems in urban computing, there might be more 
aspects of complementary knowledge that can be transferred and integrated. We thus intend to extend our 
model on integrated knowledge transferring and apply it to different application areas. For instance, for 
gesture recognition to a new user, we can transfer knowledge from both the target user’s activity learning 
model as well as other users’ gesture recognition model. 

7.    CONCLUSION 
In this paper, we have proposed a two-fold knowledge transfer model called CityTransfer for chain store 

recommendation using multi-source urban data. It aims to solve the cold-start problem when a chain enterprise wants to 
expand its market in a new city. CityTransfer introduces knowledge transfer to collaborative filtering and significantly 
extend the SVD-based CF model, which make it possible to transfer the enterprise bias knowledge from source cities and 
learn local characterizing features from similar enterprises in the target city. Experimental results show that our method 
outperforms the baselines, from different aspects, on recommending optimal chain store sites. As for future works, we will 
on one hand to extend our model to deal with the data insufficiency issues, and on the other hand, investigate the usage of 
our method in other business scenarios or application areas and develop more general integrated-knowledge-transfer 
models. 
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