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GPS has been widely used for locating mobile devices on the road map. Due to its high power consumption and
poor signal penetration, GPS is unfortunately unsuitable to be used for continuously tracking low-power devices.
Compared with GPS-based positioning, cellular-infrastructure-based positioning consumes much less energy,
and works in any place covered by the cellular networks. However, the challenges of cellular positioning come
from the relatively low accuracy and sampling rate. In this paper, we propose a novel cellular-based trajectory
tracking system, namely CTS. It achieves GPS-level accuracy by combining trilateration-based cellular positioning,
stationary state detection, and Hidden-Markov-Model-based path recovery. In particular, CTS utilizes basic
characteristics of cellular sectors to produce more credible inferences for device locations.

To evaluate the performance of CTS, we collaborated with a mobile operator and deployed the system the city
of Urumchi, Xinjiang Province of China. We collected the location data of 489, 032 anonymous mobile subscribers
from cellular networks during 24 hours, and retrieved 201 corresponding GPS trajectories. Our experimental results
show that CTS achieves GPS-level accuracy in 95.7% of cases, which significantly outperforms the state-of-the-art
solutions.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing systems and
tools;

Additional Key Words and Phrases: Cellular networks, cellular positioning, trajectory tracking, system implemen-

tation

ACM Reference Format:
Xingyu Huang, Yong Li, Yue Wang, Xinlei Chen, Yu Xiao, and Lin Zhang. 2017. CTS: A Cellular-based
Trajectory Tracking System with GPS-level Accuracy. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1,
4, Article 140 (December 2017), 29 pages. https://doi.org/10.1145/3161185

Authors’ addresses: Xingyu Huang; Yong Li; Yue Wang, Tsinghua University, Department of Electronic Engineering, Beijing,

100084, China, huangxy14@mails.tsinghua.edu.cn; Xinlei Chen, Carnegie Mellon University, Department of Electrical and

Computer Engineering, Pittsburgh, 15213, USA; Yu Xiao, Aalto University, Department of Communications and Networking,
Espoo, 02150, Finland; Lin Zhang, Tsinghua-Berkeley Shenzhen Institute, Department of Electronic Engineering, Beijing,

100084, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Association for Computing Machinery.
2474-9567/2017/12-ART140 $15.00
https://doi.org/10.1145/3161185

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 140.

Publication date: December 2017.



140:2 • X. Huang et al.

1 INTRODUCTION

Tracking the locations of massive mobile devices is required by many Internet-of-things (IoT) applications
[1][2], such as goods tracking and bike sharing. Accurate trajectory can be utilized, for example, for
optimizing the urban traffic scheduling [3], allocation of bike-sharing stations [4], and etc. Depending on
the application, the accuracy requirement for outdoor positioning and tracking varies from meters to tens
of meters. So far, GPS is considered as the most accurate positioning solution in outdoor environments,
whereas it suffers from rapid battery depletion and poor signal penetration [5]. Meeting the requirements
of IoT applications for low power and passive tracking is still a challenging while open research problem.
Concerning the wide coverage of cellular networks, we propose to utilize cellular infrastructure to

identify the outdoor locations of mobile devices on the road map. The existing cellular positioning
solutions only provide coarse locations, with the error varying with the density of base stations from
hundreds of meters to over a kilometer [6]. In addition, the sampling intervals of positions range from
seconds to minutes. By solving these problems, in this paper, we aim at developing a novel Cellular-based
Trajectory Tracking System (CTS) that would track mobile devices on the road map with GPS-level
accuracy. Towards that end, there are three critical issues to be solved.

• Large errors: the median error of trilateration-based cellular positioning is 140 meters, which is too
large for identifying the exact road segment in the urban areas, where the density of road segments is
high.

• Serious drifting: while a device stays in the same place, the locations provided by the cellular positioning
system might drift for hundreds of meters, making it difficult to detect whether the device is moving or
not.

• Low sampling rate: cellular positioning system updates device locations when the device requests
services of voice, message or data connection, resulting in potentially large update intervals. Taking our
test set as example, the average interval between two consecutive updates is over 4 minutes.

Our system calculates accurate trajectories and achieve passive tracking in the following three steps.
Firstly, it obtains coarse locations of mobile devices based on the signal trilateration algorithm [7], and
applies both speed-based and direction-based noise filtering algorithms to remove erroneous outputs.
Secondly, we design a tri-state state machine to effectively detect whether a device moves or stays, which
is a indispensable process when dealing with noisy positioning data. Thirdly, we invent a novel approach
that utilizes the cellular sector parameters, such as orientation and radiation angles, to calculate the
candidates of road segments corresponding to each device location. And we combine such approach with
enhanced Hidden Markov Model (HMM) based algorithm to recover the most probable path that the
device has traveled through.
We deployed our system in Urumchi City, China, and collected 489,032 mobile subscribers’ cellular

positioning data. Meanwhile, we retrieved 201 GPS trajectories by sniffing users’ navigation apps. Using
these GPS traces as reference, our system proves to provide GPS-level accuracy in over 95% cases, which
significantly outperforms the state of the art. The key contributions of this work can be summarized as
below.

• We build a real-time cellular-based trajectory tracking system (CTS ), which achieves GPS-level accuracy
according to the real-life experiments in Urumchi City, China.

• We design a state detection algorithm that can distinguish moving and stationary states by solving the
interference issue caused by drifting points.

• We propose a HMM-based path recovering algorithm to track mobile devices on the road map. Our
algorithm utilizes the operating characteristics of cellular sectors to promote the reliability of location
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(a) Sector characteristics. (b) Voronoi diagram.

Fig. 1. (a) Several static parameters of a cellular sector. (b) A Voronoi diagram divides the map plane into irregular
regions to model the rough coverage of cellular sectors. Each region contains one sector.

inference of mobile device. Additionally, to avoid U-turn error and detour error, we introduce two
kinds of path selecting penalties into the calculation of transition probability.

The remainders of the paper are arranged as follows: in Sec. 2, we give an overview of the background and
related works. In Sec. 3, we describe the details of system design. System implementation is introduced in
Sec. 4. Parameter configuration and performance evaluation are presented in Sec. 5 and Sec. 6 respectively.
Finally, we briefly summarize our work in Sec. 7.

2 BACKGROUND AND RELATED WORKS

In this section we first briefly introduce the cellular positioning technology and its main drawbacks
compared with GPS-based position. After that, we present backgrounds with the remained challenges of
tracking mobile devices.

2.1 Cellular Positioning

In cellular networks, a mobile device typically communicates with several cellular sectors. As shown in Fig.
1, each sector includes a set of parameters: SP = {L, θr, θd, Vs}, where L refers to the geo-coordinates,
θr and θd are the radiation angle and direction angle of the sector antenna, respectively. A smaller θr
means the antenna is directed to a narrower region. θd measures the angle between the North axis and
the bisector of θr, and Vs represents the Voronoi diagram[8] of all sectors in the city. It separates the
map plane into thousands of cells, where each cell roughly models the coverage of the sector.

The classical forward-link-trilateration algorithm[9] calculates the location of a mobile device based on
the time it takes for the signals to travel from each of the connected sectors to the device. As illustrated
in Fig. 2, a cellular trajectory, which refers to a sequence of device locations, will be generated witm
time. Note that in [10] and [11], a cellular trajectory refers to a sequence of cellular base stations to which
a mobile phone connected over time.
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Fig. 2. Illustration of cellular positioning based on forward-link trilateration. The location of the mobile device
z0 = (x0, y0) is calculated from T1, T2, T3 that refer to the durations of sending signal from each of the connected
cellular sectors to the device(x1:3, y1:3). A sequence of device locations (z1, ..., z4) can be mapped to a sequence of
road segments (r1, ..., r4).

We define the cellular trajectory of a mobile device as Z, which consists of N points. Each point is
described with the corresponding latitude, longitude, and time stamp. It can be expressed as follows,

Z = z1, ..., zt, ..., zN , (1)

where zt = (latt, lngt, Tt), 1 < t < N .
Compared with GPS-based positioning, cellular positioning provides lower spatial accuracy, and

supports a lower sampling rate. In addition, it suffers from the problem of location drifting.
Low Spatial Accuracy: The accuracy of cellular positioning is greatly affected by the multi-path

propagation of wireless signals, especially in the areas with high density of buildings. In case the closest
cellular sectors are heavily loaded, a mobile device may be connected to other cellular sectors that
are located far away. In this case, the error of cellular positioning becomes extremely large (Fig. 3(a)).
According to our measurement, the median error of cellular positioning is 143 meters, with 90% of errors
smaller than 215 meters.
Low Sampling Rate: The existing cellular positioning systems update the device locations when the

device is initiating or terminating a voice, message or data service. In case the user has not used any
of these services for a long time, the location information will be missing during a long period. As the
result, there may be a large distance between two consecutive locations (Fig. 3(b)).

Location Drifting Issue: When a mobile device is stationary, the results of trilateration-based
positioning over time do not remain the same. The estimated locations may randomly scatter within a
circle with a diameter of hundreds of meters. We call the ground truth of the device location as Stay
Point (three blue marks in Fig. 3(c)), and the estimated locations with random errors as Drifting Points
(massive red marks in Fig. 3(c)). We can observe from Fig. 3(c) that the phone user has been to three
different places, corresponding to three clusters of drifting points. The radius of such cluster can be
several hundreds of meters according to our experiments.

2.2 Trajectory tracking

In digital road map, a road is defined as a sequence of road segments. For instance, road ri in Fig. 2
consists of 3 segments, namely, seg1, seg2, seg3. Accordingly, a device’s trajectory on the road map
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(a) Path A is the ground truth. Incorrect
Path B was recovered due to large errors

of cellular positioning.

(b) Difficulty in identifying
the exact path due to the low

sampling rate.

(c) Clusters of drifting points.

Fig. 3. Illustration of three major challenges.

can be described as a sequence of road segments that the device has covered. Identifying such device
trajectories on the road map is required by many location-aware and IoT applications.
The essential issue for trajectory tracking is matching the positioning points, e.g. GPS points, onto

the road map, and recovering the covered road segments. This is also known as the map matching
problem. During the last decade, various map matching algorithms have been developed for GPS data.
These techniques can be categorized into three groups: topological [12, 13], geometric[14, 15], and
probabilistic[16, 17] techniques.

However, when it comes to cellular positioning, the map matching approaches designed for GPS-based
data often cause severe errors, due to the low accuracy, low sampling rate and the drifting issue. For
example, when the density of roads is high, the errors of cellular positioning, up to hundreds of meters,
may easily cause mismatch of road segments. Taking Fig. 3(a) as an example, Path A is the actual path
the mobile device traveled through, but the estimated locations are actually closer to Path B. Due to the
low sampling rate, it may also be hard to determine which route the device has taken when there are
alternative routes with similar travel distances and duration. An example in Fig. 3(b) shows that the
1.5-kilometers-long gap between xt−1 and xt makes it practical to travel through either Path A or Path
B. We summarize the errors in path recovery as three typical categories as follows.

U-turn error: While a mobile device moves straight along a road, if one estimated position xt

diverges from the road (such as x3 in Fig. 4(a)), an undesired U-turn would be included in the recovered
route. We will discuss this issue in detail in Sec. 3.3.
Detour error: Showing in Fig. 4(b), the device moves along an arterial road. Because the estimated

position x3 is closer to a sideway, which is parallel to the arterial road, a detour error occurs.

(a) U-turn error. (b) Detour error. (c) Back and forth error.

Fig. 4. Three typical categories of errors in path recovery.
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Back-and-forth error: In Fig. 4(c), a mobile device generates drifting points, x1:4, when it remains
at xs. When recovering the path, it looks like the device is moving back and forth between these drifting
points, whereas in fact the device is stationary.

2.3 Related Work and Motivation

In recent years, several solutions have been proposed to solve the challenges of cellular-based trajectory
tracking. CTrack[18] fuses device’s cellular fingerprints and additional sensor data to perform the tracking.
However, it requires access to the sensor data collected by mobile devices. Cell* [19] divides the digital
map into grids with fixed size, calculates the probability of a user being in each grid, and incorporates A*
algorithm to determine the most likely sequence of grids that the mobile device has traveled through.
In order to model the coverage of cellular sectors in each grid, the system has to gather massive GPS
location data as ground truth.
SnapNet [10] is a relatively thorough system for cellular-based trajectory tracking. It utilizes HMM-

based algorithm to track the mobile device without any additional sensors. However, the system may
not be practicable enough, since it only provides seven test cases. Further, solutions for common errors
in path recovery, such as U-turn and detour errors, are not adequately considered in the system. As a
geometric-based approach, TPDA [20] introduces Voronoi diagram to model the geometric relationships
among cell towers, roads and mobile devices. The limitation of this algorithm is that it performs well
only when the density of cell towers is high and the trajectories are rather straight.

As summarized in Table 1, CTS has overcome most drawbacks of cellular-infrastructure-based trajectory
tracking. More specifically, we employ speed-based and direction-based filter to remove noisy points of the
cellular positioning, and solve the drifting issue with state detection algorithms. Regarding path recovery,
we introduce U-turn and Direction changing penalties into the HMM-based algorithm framework, and
dramatically reduce three typical errors. Furthermore, we utilize the sector characteristics and Voronoi
diagram to improve the accuracy when matching cellular positioning points to the road map. We will
describe the details in Sec. 3.

Table 1. Comparison of cellular tracking systems

System
/ Features

Additional
Sensors

Training
Process

Massive
Ground Truth

Curved
Trajectories

Algorithm
Practicability

CTrack[18]
√ √ × √ ×

Cell*[19] × × √ √ √

SnapNet[10] × × × √ ×
TPDA[20]

√ × × × √

CTS × × × � �

3 SYSTEM DESIGN

As illustrated in Fig. 5, CTS consists of three system modules: cellular positioning, state detection, and
path recovery. In the first module, we adopt a widely used technique, trilateration positioning, to locate
mobile devices, and focus on removing noisy positioning points through two noise filters. Then, a state
detection process is proposed to solve the drifting issue. Finally in the third module, we design the
HMM-based approach to recover the actual paths of cellular trajectories. Now, we present the details of
these modules.
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Fig. 5. System architecture of CTS.

3.1 Cellular Positioning

3.1.1 Forward-link Trilateration Positioning: The forward-link trilateration is a time-based positioning
technique, which is widely implemented in cellular networks[7]. It measures the signal travel times,
T i
t (i = 1, 2, 3, t = 1, 2, ..., N), from each of the three connected sectors to the mobile device at time t.

Then, the distances between the device and the sectors are calculated by dit = c · T i
t , where c is the

velocity of electromagnetic wave. The exact locations of the sectors, denoted as (xi, yi), are obtained from
the set of sector parameters SP . Ideally, as illustrated in Fig. 6(a), we could calculate a unique solution
of the device location (x0, y0), by solving:

(T i
t · c)2 = (xi − x0)

2 + (yi − x0)
2, i = 1, 2, 3. (2)

(a) Ideal condition (b) Typical condition

Fig. 6. Forward-link Trilateration Method.
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The multi-path propagation and time synchronization error might cause the equations over-constrained.
[21] applies least-square approach to solve it. As shown in Fig. 6(b) the estimated locations typically fall
in the overlapped area of the sectors. In this way, a sequence of locations of a mobile device are estimated
along the time.

3.1.2 Speed-based Noise Filtering: As mentioned in Sec. 2, the error of trilateration could reach hundreds
of meters. Consequently, the calculated speeds of the device may become abnormally high when traveling
between erroneous positioning points. As illustrated in Fig. 7(a), the device travels from xt−4 towards
xt. Because the signal is blocked by the overpass, the cellular positioning system generates xt−2 and
xt−1 with extremely large errors. This causes over-estimation of the speeds over −−−−−−→xt−3xt−2,

−−−−−−→xt−2xt−1, and−−−−→xt−1xt.

(a) Over-estimation of speeds caused
by noisy points.

(b) After the noisy points are removed
by the speed-based filter.

Fig. 7. Illustration for speed-based noise filter.

Two speed thresholds, th1 and th2, are defined for every road, according to the distribution of users
speed on that road. As explained in Sec. 5.2, th2 is slightly higher than the speed limit of the road,
in order to tolerate acceptable positioning errors. Yet th1 is about twice the value as the speed limit
according the data analysis in Sec. 5.2. In practice, we use a sliding window with size 3 to filter out
noisy points based on speed information. Each time, we calculate the speed between point A and B, and
the speed between point B and C. We denote the speeds by SAB and SBC , respectively. If any of the
following two criteria is satisfied, the middle point B would be filtered out.

{ ∃ s ∈ {SAB , SBC}, s > th1; (3a)

∀ s ∈ {SAB , SBC}, s > th2. (3b)

As shown in Fig. 7(b), after we remove xt−2 and xt−1, the recovered path no longer needs to travel
back and forth, thus the speed between xt−3 and xt returns to a normal level. Note that, since the
positioning points have not been matched onto the road map, we assign each point to the nearest road.
This approximation makes sense because the attribute of different roads in a local area are typically
similar, meaning that there is little difference between the speed limits.

3.1.3 Direction-based Noise Filtering: After removing the noisy positioning points based on speed
information, we detect the state of the device in order to identify the drifting points. When the device
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remains in a stay point (the blue-hollow point in Fig. 8(a) ) or move in a small range, it is in the
stationary state. Otherwise, it is in a moving state or in a transient state. As mentioned above,
when the device remains stationary, it produces drifting points (the red points in Fig. 8(a)), which cause
severe disturbance in path recovery.
As the drifting points can cause the back-and-forth errors, they are supposed to be removed from

trajectories. The drifting points can be identified by detecting the stationary state, if the user has stayed
in the same place for a long time. But in case the stay is too short to be detected, we propose to apply a
direction filter to eliminate the back-and-forth errors as follows. If the angle between the moving directions
at two consecutive positioning points exceeds a threshold αd, the former point will be removed from
the trajectory. With a smaller αd, more back-and-forth errors can be removed, whereas some reasonable
turnings may be misclassified as errors. This direction-based filter will be disabled by setting αd as a flat
angle, and the optimal value of αd is estimated in Sec. 5.3.

3.2 Stationary State Detection

We design a state detection algorithm to solve the drifting issue, and its basic ideas are as follow:

• If a series of positioning points of a device can be included in a small circle, the user tends to remain
stationary;

• If some of the new generated points fall out of the circle, either the device is moving or these points are
seriously influenced by noise. Hence, we have to observe some more points to make sure the device is
actually moving.

• Similarly, when the device is considered to be traveling, in order to determine that the device turns
stationary again, we have to wait for adequate new generated points to gather in a small circle.

• The radius of the circle increases along the time in a certain period, because the longer a device stays
in the same place, the more likely it is to generate positioning points far away from each other. The
reason is that a device in the stationary state may connect to different sets of sectors due to the
cellular network’s load-balancing strategy and time-varying signal channels. Thus the positioning points
produced by different sectors can be far away.

Suppose that at time t, we have collected a sequence of positioning points since time i, denoted as
Xt = {xi, xi+1, ..., xt}. Then we draw the aforesaid small circle, Ct, whose center is set as the geometric

(a) Drifting points. (b) The state machine implements the state detec-
tion algorithm.

Fig. 8. Illustration of drifting issue and state machine
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center of Xt. The radius of Ct varies as the following expression:

Rt =

{
= R1 + t ∗Rstep ,if t0 ≤ t ≤ tn;

= R1 + tn ∗Rstep ,if t > tn,
(4)

where Rt increases approximately linearly over time when 1 ≤ t ≤ tp, and almost remains invariant if the
device keeps stationary when t > tp. We will verify it in Sec. 5.4.
We utilize a tri-state state machine to implemented the algorithm, as shown in Fig. 8(b). Given the

input data, i.e. a sequence of positioning points, the state machine detects the stationary period of the
device, and aggregates the drifting points to avoid the back-and-forth error in path recovery. The specifics
of the algorithm are presented in Algorithm 1.

3.3 HMM Based Path Recovery

With the noisy points filtered and drifting points aggregated in the above modules, now we obtain a clean
location sequence of a mobile device. The next step is to track the device on the road map by recovering
its traveled paths.

In terms of Path Recovery procedure, the most critical issue is the tradeoff between the paths indicated
by the positioning data and the actual applicability of the paths. In our case, this tradeoff is even more
vital than previous GPS-based scenarios, because cellular positioning data has significantly larger error.
That means, a path which is closest to a cellular positioning point might not be on the real route of the
phone user.
Thus, our CTS system employs an HMM-based algorithm to make correct matches between noisy

positioning data and the roads. Our major contributions in this algorithm are summarized as follows.

• Improving the precision of observation probability by utilizing sector parameters to indicate the more
probable areas where the mobile device might appear. This enables the system to infer the traveled
road segments with higher accuracy.

• Introducing turning and heading penalties into the calculation of transition probability, which reduces
the appearances of U-turn and detour errors.

3.3.1 Important Notations of the Model. Hidden States: Roads that the mobile user actually traveled
are corresponding to hidden states of HMM. They are called hidden because we do not directly know the
route that the user went through. We define them as R = {r1, ..., rt, ..., rN}.

Observations: The locations measured by CTS, i.e., points in cellular-based trajectories, correspond
to the observations of hidden states. For example, if X = {x1, ..., xN} represents a trajectory, then
xt, 1 ≤ t ≤ N, are HMM observations.
State Candidates: The ground truth of a location point xt may belong to any road segment close

to xt, due to the random error of cellular positioning. All the road segments within the error range are
defined as state candidates of xt. The set of state candidates is denoted by St = {st,1, st,2, ..., st,N}, where
st,i represents the ith road segment to which xt might be mapped.

Observation Probability: P [xt|st,m], the observation probability, represents the probability that xt

can be observed when the hidden state is st,m. That means, when the phone user travels along a road
st,m, he would be observed to be in the location xt with a probability P [xt|st,m].
Transition Probability: P [st+1,m|st,m], the transition probability, represents the probability of the

state shifting from st,m to st+1,m, i.e., the probability of the phone user moving into road st+1,m at time
t+ 1 after leaving road st,m.
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ALGORITHM 1: Stationary/moving state detection.

Input: Xin = {x1, ..., xm, ..., xn, ..., xp, ..., xq, ..., xN};
(A set of cellular positioning points when 1 < t < N);

Output: Xout = {x1, ..., x
m:n
Agg, ..., x

p:q
Agg..., xN} ;

(The drifting points of Xin, xm:n and xp:q, are merged respectively to xm:n
Agg and xp:q

Agg);

Initialization, ST 1 = stationary, t = 1, Rt = R1, ct = x1, xi = x1;

for t = 2; t < N ; t = t+ 1 do
if ST t == stationary then

Xin
t = {xi, xi+1, ..., xt};

Calculate the geometric center, ct, of X
in
t ;

Draw circle Ct, whose center is ct, radius is Rt;

if the new coming point xt+1 falls in Cn then
ST t = stationary, (notation �);

end

else
ST t = transient, (notation �);

end

end

else if ST t == transient then
set a sliding window W with width = Wid;

while W is not full do
load xt into W ;
t = t+ 1;

end

if Wid ∗ 0.9 or more pts in W are out of Ct then
ST t = moving, notation �);

Regard Xin
t as drifting points;

Aggregate Xin
t to xi:t

Agg, where xi:t
Agg = ct;

end

else
ST t = stationary

end

end

else if ST t == moving then
Determine whether the device still moves, or turns stationary.

end

end

Formulation of the Path Recovery Problem:With the notations above, the path recovery problem
can be mathematically defined as follows. Given an observation sequence (i.e., a cellular positioning
trajectory) X = {x1, ..., xt, ..., xN}, and sectors parameters SP , our goal is to define the most probable
state sequence Y = {y1, ..., yt, ..., yN} as the recovered path, where yt ∈ St, 1 ≤ t ≤ N . Then, the sequence
Y would be the closest approximation of hidden states R, which is the actual but unknown roads traveled
by the user.
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(a) Definition of |xt − st,m| (b) Situation where the phone is

connected to sector A

Fig. 9. Illustrations of notations related to observation probability

3.3.2 Observation Probability. The observation probability P [xt|st,m] gives a measurement of how
possible it is to observe xt when the phone user is moving on the road segment st,m. It is reasonable to
consider that the shorter the distance between road st,m and location xt is, the larger the probability
of observing xt from st,m is. Meanwhile, the error of cellular positioning causes the mismatch between
a positioning point and the actual traveled road segment. Here, we suppose the positioning error to
follow Gaussian distribution, with standard deviation of σx. Then, we are able to temporarily model the
observation as:

p(xt|st,m) =
1√
2πσx

· e−0.5(
|xt−st,m|

σx
)2 , (5)

where the measurement |xt − st,m| is the spherical distance between xt and st,m, as shown in Fig. 9(a).
In Fig. 9(b), the observation xt has equal distances to st,m and to st,n, i.e., |xt − st,m| = |xt − st,n|. In

CTS system, with the knowledge of sector parameters SP = {θr, θd, Vs}, we can figure out which one of
st,m or st,n is the more probable state. Suppose that sector A is deployed near st,m, with its direction
angle to be θd = 0◦ (North oriented) and its radiation angle to be θr. Apparently, sector A is directed
towards st,n, and back against st,m. If a phone is connected to sector A and is estimated to locate at xt,
the phone is more likely staying on road st,n. This situation is modeled as:

p(xt, SA|st,m) = p(SA|st,m) · p(xt|st,m, SA), (6)

where SA represents the sector to which the phone is connected. Since being connected to SA is the
prerequisite to sampling the location xt, we rewrite (6) as:

p(xt|st,m, SA) =
p(xt|st,m)

p(SA|st,m)
, (7)

where p(xt|st,m, SA) ≥ p(xt|st,m) since p(SA|st,m) ≤ 1.
We mark p(xt|st,m, SA) as p∗(xt|st,m), and denote p(SA|st,m) by factor fSA , which measures the

influence of sector A. Then, we rewrite (7) as:

p∗(xt|st,m) = p(xt|st,m) · fSA
, fSA

≥ 1. (8)

Here, we derive the final observation probability p∗(xt|st,m), and calculate p(xt|st,m) based on (5).
Regarding fSA

, we propose a rule-based method to compute it.
Rule-based Method for Calculating fSA : To calculate fSA

, we use a two-step method.
First, we determine if xt and st,n are covered by sector SA. We introduce Voronoi Diagram Vs to

separate the map plane into thousands of cells, as illustrated in Fig. 10(a). The center of every cell
is a cellular sector. For example, the blue solid dots in Fig. 10(b) represent two sectors. The lower
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(a) Large-scale VS

(c) Coverage of sector A

(b) Voronoi cell of sector A

(d) Chord angle θA

Fig. 10. Illustration of the method for calculating fSA

one is SA. The distance between SA and the cell border above it is l. The simplest way to model
the sector coverage is to regard the whole cell as the coverage range, but usually cellular sectors are
not omnidirectional (θr 
= 360◦). Therefore, we draw a fan-shape, whose radius is 3l, and refer other
parameters to SP = {θr, θd, Vs} (Fig. 10(c)).
Second, we determine the formula of calculating fSA

according to whether st,n is included by the
fan-shape. The road segment st,n is considered to be included in the fan-shape when they have intersecting
parts. If either xt or st,n is out of the fan-shape, fSA

is set to be 1. Otherwise, if the road segment st,n
intersects the fan-shape at chord DE (Fig. 10(d)), then the chord angle, notated as θA (∠DAE), ranges
from 0 to θr. Assume that θA is positively correlated with fSA

, fSA
can be calculated as below.

fsA = 1 + δ(xt, st,n) ∗ s ∗ (1− eθA/θr ), (9)

where θA ∈ [0, θr], and s is the scalar parameter. In addition, δ(xt, st,n) = 1 when xt and st,n are both
covered by the sector, and otherwise equals to 0.
Substituting (9) into (8), we obtain the modified observation probability as follow:

p∗(xt|st,m) =
1√
2πσx

· e−0.5(
|xt−st,m|

σx
)2 ∗ [1 + δ(xt, st,n) ∗ s ∗ (1− eθA/θr )], (10)

and the related parameters in (9) are estimated in Sec. 5.5.

3.3.3 Transition Probability. Suppose the mobile user travels in road segment st−1,m at time t− 1. At
time t, he might move to one of the state candidates in st,n. We use transition probability to measure its
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(a) Erroneous positioning point xt (b) U-turn error

Fig. 11. An example scenario of U-turn error.

possibility[17]:

p(st,n|st−1,m) = 1/β · e−dt/β , (11)

where dt is the difference of the distance the phone user have to travel from st−1,m to st,n, and the
straight-line distance between the corresponding location xt−1 and xt. β is estimated according to the
dataset (discussed in Sec. 5.6). C. Goh [22] proposed a distance discrepancy function, where the historical
average velocity of each road segment was taken into consideration. This function could only be applied
when we know the transportation mode of the phone user, whereas there is no such information in most
daily applications. Thus, in CTS system, we modify (11) into (12), taking into account two penalties: (a)
U-turn penalty λU ; (b)direction changing penalty λDC ,

p(st,n|st−1,m) = λU · λDC · 1
β
· e−dt/β . (12)

The estimations of λU and λDC are conducted in Sec. 5.6. U-turn Penalty As mentioned in Sec. 2.2,
the errors of cellular positioning points can be as large as hundreds of meters. Given two candidates st,i
and st,j , although st,i is the actual road segment the user travels in, st,j which is closer to xt would earn
higher transition probability than st,i. As illustrated in Fig. 11 (a), the wrong state st,j is included in the
recovered path sequence, leading to a U-turn error (Fig. 11(b)).
When calculating p(st,n|st−1,m), we use the Dijkstra shortest path algorithms to find the optimal

path from st−1,m to st,n, represented as Pt,t−1 = {rt,1, ..., rt,M}. Since these road segments {rt,1, ..., rt,M}
are connected one by one, if any two consecutive segments, say rt,i−1 and rt,i, are pointing to opposite
directions, we add a penalty λU to p(st,n|st−1,m) in order to eliminate the U-turn error.
Direction Changing Penalty Aside from U-turn error, large positioning errors could cause detour

error as well, as shown in Fig. 4(b). A practical way to eliminate the detour error is to add direction
changing penalty λDC to path Pt,t−1 = {rt,1, ..., rt,M} which includes too many turns, i.e., changing
direction too frequently. In this way, the detour error could be excluded by Viterbi Algorithm[23] while
finding the most likely states sequence, i.e., the most likely sequence of road segments the user traveled.

λDC = b
−Σθi/(0.5π)
DC , (13)

where θi(1 ≤ i ≤ Nturn) is the angle of each turn on path Pt,t−1, and Nturn is the number of turns
included in path Pt,t−1.

Finally, with the emission probability and transition probability, expressed by (10) and (12), the Viterbi
algorithm can efficiently calculate the optimal route on the digital map for a trajectory.
In summary, CTS locates a mobile device in three steps. Firstly, locations with low accuracy are

estimated using the trilateration method. Secondly, we utilize a state machine to detect stationary points
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and aggregate drifting points. Finally, an HMM-based path recovery algorithm is applied to accurately
locate the mobile device on the road map.

4 SYSTEM IMPLEMENTATION AND DETAILS

We implemented CTS based on the cellular infrastructure owned by a mobile operator in China. The
system was deployed and tested in Urumchi city, the capital city of Xinjiang province of China. The
cellular positioning module is built based on the CDMA cellular infrastructure[24], while the state
detection and path recovery algorithm are deployed in a central server of the mobile operator. The
database of sector parameters is maintained by the mobile operate. Besides the cellular positioning data,
we also collected GPS traces by sniffing and resolving the anonymous subscribers’ internet accessing logs
in the cellular network1.

4.1 Architecture of Implemented System

To provide an overview, we draw the system of the implemented system in Fig. 12. The left part of the
figure illustrates the cellular positioning system, while the right half is the rest parts of CTS.

As shown in the figure, when a mobile station(MS) communicates with the base station subsystem(BSS),
the measurement data for trilateration positioning is sent to mobile service center(MSC). Then, the
mobile positioning center(MPC) sends such measurements to the position determining entity(PDE), who
calculate the position of the mobile phone by trilateration algorithm. Next, the positions are transmitted
as trajectory data to the central server of our system. There, the algorithm components, including filters,
state detection, and path recovery, are utilized to track the mobile phone in the road network. Finally,
the tracking results can be used by various location-based services in the form of location coordinates.

Fig. 12. Architecture of the implemented system

4.2 Collecting Cellular Positioning data

Our cellular positioning data was collected during one day, from 23:40 October 9th, 2016 to 23:40 October
10th, 2016 in Urumchi. Only at the moment when a subscriber launches or terminates a message, voice
or data traffic service, the cellular-network-side locates the subscriber based on trilateration. Afterwards,
the cellular network outputs a piece of positioning data, represented by a tuple, to a database:

Positioning Data = {UserID, Location, T ime, SectorID},
where the Location is in the format of (latitude, longitude), and SectorID refers to the IDs of sectors
that accomplished the trilateration positioning.

1All the sniffed packets are anonymous, i.e., we analyze the packets without knowing to whom they belong
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Table 2. Detailed Description of Cellular Positioning Data

Item Description

Location
Urumchi, the capital of Xinjiang
Province, China

Time Period
23:40 October 9th 2016 to
23:40 October 10th 2016 (24 hours)

Triggers of Data Sampling
Voice Service, Message Service,
Data Traffic Service

Amount of Subscribers 489,032

Percentage of Different Subscribers
2G users: 7%,
3G users: 93%

Average Amount of Data each User Generates 276 pieces / 24hours

Median Amount of Data each User Generates 134 pieces / 24hours

Among anonymous 489,032 subscribers in Urumchi, we recorded 135 million pieces of positioning data.
Each subscriber generated on average in 24 hours 276 pieces of data. The median during the 24 hours is
134. If we look into the time period from 8:00 AM to 8:00 PM during which users are active, we only get
a median of 11.2 pieces of positioning data per hour for each user, i.e., the median sampling rate of our
dataset is 11.2 samples per hour at best. This rate is extremely low compared with that of the GPS’s,
which is generally at least 60 samples per hour. But even worse, the positioning accuracy is also much
lower than GPS’s. As mentioned before, the median error of cellular positioning is 143 meters, and 90%
of errors are less than 215 meters. More details and system parameters are summarized in Table 2.

4.3 Sector Parameters Database

We are authorized to access a database that stores the information of all the 5,367 sectors that possessed
by the mobile operator in Urumchi. From this database, we can acquire precise locations of all sectors, in
the form of Loc = (latitude, longitude), and part of their operating parameters, including orientation
(Direction angle) and opening angle (beam width). These parameters are denoted as SP = {L, θo, θd, Vs},
as introduced in Sec. 2.1.

4.4 Ground Truth Trajectories

Ground truth trajectories are the paths/routes that the phone users actually traveled when the cellular
positioning data is generated, which are needed for system performance evaluation. Since the ground
truth path is spatially continuous, the data providers [19] usually sample GPS points sequence as the
substitution. The ground truth GPS points are typically collected through Apps installed in appointed
mobile devices.
The installation process and data uploading requires extra resources. Thus, we design an alternative

method to obtain the ground truth trajectories, mainly by sniffing and resolving data packets of users’:

• Sniff the data packets when users send GET requests from their Apps. Usually, a GET request contains
a Uniform Resource Locator (URL) that the user tends to visit. Some of such URLs are generated
by Apps providing Location-based Services(LBS), such as Google Map and Uber. These URLs may
contain latitude and longitude coordinates in them.

• Extract Latitude and Longitude coordinates from these URLs.
• Sort these coordinates by user’s ID, and assemble the coordinates of each user into GPS trajectories.
• Match these GPS trajectories with the cellular positioning trajectories by user’s ID.
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(a) Cellular trajectory (b) Resolved GPS trajectory

Fig. 13. An example of a cellular trajectory and its ground truth GPS trace.

By this means, we resolved 201 GPS traces, whose total distance is 1696 kilometers. An example of a
cellular positioning trajectory and its corresponding GPS ground truth trajectory are shown in Figure 13.

5 PARAMETER SELECTION

In this section, we estimate the parameters of all three system components, either by utilizing the
statistical characteristics of the trajectory data or by conducting numerical experiments on the dataset.
Because of the system includes multiple parameters, it is critical to make the relationships of their
estimation processes clear in Table 3.

Table 3. Relationships among estimations of multiple parameters.

Estimation method: numerical statistical dependencies

a. {th1, th2} in Speed-Based Noise Filter × √ ×
b. αd in Direction-based Noise Filter

√ × a,c

c. {R1, Rstep, t0, tn} in State Detection × √ ×
d. {σx, β} in HMM × √ ×
e. Sector Factor fSA

√ × a,b,c

f. U-turn Penalty λU
√ × a,b,c,d,f

g. Direction Changing Penalty λDC
√ × a,b,c,d,e

Note that, since the system is application-oriented, it is acceptable to perform coarse-grained numerical
calculation to obtain suboptimal parameters, considering the time cost. More precise values could be
calculated with higher time cost if necessary.
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5.1 Metrics of System Performance

Before conducting the experiments in this section and evaluations in 6, we define two metrics of system
performance to make the following discussion clear. We define the overall relative accuracy of distance as:

ad = 1− Σi|dir − dig|
Σidig

, 1 ≤ i ≤ NT , (14)

where dir refers to the distance of the path recovered from the ith trajectory, dig is the distance of the ith
ground truth path, and NT is the total number of the tested trajectories.
Similarly, the overall relative accuracy of number of road segments is defined as:

as = 1− Σi|ni
r − ni

g|
Σini

g

, 1 ≤ i ≤ NT , (15)

where ni
r represents the number of road segments of path that recovered from the ith trajectory, and ni

g

refers to the number of road segments of the ith ground truth path.
For simplicity, ad and as are called accuracy of distance and accuracy of segment in the rest of

the paper.

5.2 Speed-Based Noise Filter

In our system, we utilize the speed-based noise filter to remove points with abnormally high speeds, where
the speed thresholds, th1:2, in (3a) and (3b) need to be configured. In the digital map, roads are labeled
with different category tags, and each type of road has its max-speed key, indicating the maximum legal
driving speed on the road. In order to determine the value of th1:2, we analyze the points with speeds
higher than max-speed on each type of road, and draw the box-plots in Fig. 14 to demonstrate their
distributions. Note that, since the positioning points have not been matched onto the road map, we assign
each point to the nearest road. This approximation makes sense because the attribute of different roads
in a local area are typically similar, meaning that there is little difference between the speed limits.

Fig. 14. Actual speeds of users on roads with different speed limits.

We observe that the variance of speeds increases with the speed limit. The highway, with the speed
limit of 120km/h, has the largest variation and upper extreme, possibly due to the sparsity of cellular
infrastructures in highway.
For th2 in (3b), in order to tolerate acceptable positioning errors, the value should be slightly higher

than speed limit, so that we adopt the median of each box. (3a) provide a more decisive rule, therefore,
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the value of th1 ought to be high enough to detect the noise points. Hence, we use upper extreme of each
box as the threshold for (3a). Medians and upper extremes of different types of roads are listed in Table 4.

Table 4. Statistics of roads with different speed limits.

Road Limit Speed (km/h): 30 40 50 70 80 120

Median (km/h) 48 66 83 111 121 203

Upper Extreme (km/h) 64 87 116 165 170 307

5.3 Direction-based Noise Filter

Direction-based noise filter is introduced in our system to eliminate the back-and-forth errors. We tune
the value of αd with the step of 10◦ to obtain a suboptimum with low time cost. Note that, when αd is
set as a flat angle, the filter is not active, because any angle of direction changing is less than 180◦. As
shown in Fig. 15, when αd is in the range of [140◦, 160◦], the accuracy of the recovered paths is much
higher. We set αd as 150◦ in the following evaluations.

Fig. 15. Overall accuracy of segment with different αd.

5.4 State Detection

In our system, the detection of stationary state is accomplished by the state machine, in which parameters
{R1, Rstep, t0, tn} need to be determined. When a user is in the stationary state, we find that his or her
cellular positioning points spread into a wider range along the time. We adopt the standard deviational
ellipse[25] to measure such spreading trend.

As shown in Fig. 16, a standard deviational ellipse measures the geographic distribution of the spatial
data, with its long axis pointing to the direction that the data shows maximum deviation. Thus, the long
axis diameter indicates the range the cluster covers. We calculate ellipses of 200 drifting points clusters
extracted from cellular trajectories, and study the variation of the long axis diameters over time.
Fig. 17 shows that the median of the long axis diameters increases from 330 meters, and tends to be

stable at 800 meters when the user stays for more than 2 hours. Moreover, the median of diameters rises
approximately linearly, with the slope of 320 meters per hour. Therefore, in (4), the initial radius R1 equals
to 330/2 = 165 meters, the increasing rate, Rstep, is set as 320 meters/hour, and the diameter-varying
time window [t0, tn] should be in the range of [0.5hour, 1.75hour].
Recall the cellular positioning method discussed in Sec. 3.1, the mobile phone is located by three

cellular sectors. However, when phone user remains stationary or moves only in a narrow range for a
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Fig. 16. Standard deviational ellipse of a drifting points cluster.

Fig. 17. The variation trend of long-axis diameters with time.

certain period of time, the cellular-side positioning system might allocates another set of sectors to
perform the positioning process. As a result, the new generated positioning points would show a new
spatial distribution. Further, if the user stays for several hours, he might be located by all possible sets of
nearby sectors. Then, the distribution of the positioning points keeps stable.

5.5 Observation Probability

When calculating the observation probability of HMM-based path recovery algorithm, the standard
deviation of the cellular positioning error σx in (5), and the sector factor fsA in (9) are to be estimated.
We calculate the former based on its definition, and it equals to 130 in our system.

The fSA
is employed to adjust the influence of sector information on path recovery. According to (9),

we need to estimate the scalar parameter s, and then calculate fSA
using that equation. In order to speed

up the estimation process, multi-round process is recommended, during which the step size decreases
with rounds. Here, we perform 2-round estimation.

In the first round, the initial value is set as s = 10−1, and the value rises tenfold in each step, up to
s = 103. Dotted line in Fig. 18 shows that the peak falls when s = 101. We perform the second round to
further determine that s = 100.9 is the optimum when the step size is 0.1 in logarithm. In the following
evaluations, we set s = 100.9 ≈ 8.
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Fig. 18. The 2-round estimation of scalar factor s.

5.6 Transition Probability

When calculating the transition probability for path recovery, we need to determine the values of U-turn
penalty λU , direction changing penalties λDC , and the normalization factor β in (12). β is estimated
according to the method proposed by P. Newson[17], and it is estimated to be 200 meters in our system.

The other two parameters, λU and λDC are introduced to eliminate the back-and-forth error and the
detour error, respectively. To reduce the computational cost, we separately estimate them coarsely in the
first place, and then conduct joint-estimation with a finer granularity. Note that, for λDC , we should
estimate its base number bDC , and then calculate it based on (13).

In Fig. 19, we observe that the accuracy varies slightly with the U-turn penalty λU , and the optimum
falls in [−1,−2.33] in logarithm. While [0.6, 0.9] is the preferred range of bDC , which is the base number
of λDC , the accuracy drops down sharply when bDC approaches zero.
These trends are consistent with our expectation. If bDC is too small, in order to avoid the direction

changing punishment, the path recovery process would choose the route that has as few turnings as
possible, regardless other regulations. Moreover, when the λU approaches zero, the accuracy drops slightly,
because in cellular trajectories there are few cases of actual U-turns, and the drop-down of performance
comes from misjudging the U-turns as wrong recoveries.

Fig. 19. The preliminary estimation of λU and bDC .
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Fig. 20. The joint estimation of λU and bDC .

After the coarse and separate estimations, we perform 2-D numerical calculation in a finer granularity.
The step size can be smaller if necessary. According to Fig. 20, the optimum is near (λU , bDC) =
(10−1.67, 0.75). Thus, we set (λU , bDC) = (0.02, 0.75) in the following evaluations.

6 EVALUATION

We conduct comprehensive experiments to evaluate the proposed system. We first compare our system
with five baseline algorithms, and analyze the effectiveness of each component of the algorithm. Second,
we evaluate the impact of two external factors, road density and sampling rate, on the system performance.
All the experiments are based on the test dataset2, which consists of cellular trajectories and their ground
truth GPS trajectories. The specifics of the test dataset are illustrated in Table 5. The average sample
rate of GPS trajectories is three times higher than that of cellular trajectories, as well as useful points.
The total distances of the two kinds of trajectories are basically equal.

Table 5. Details of Test Data.

Item Cellular Trajectories GPS Trajectories

Average sample rate 18.2 Pts/hour 81.3 Pts/hour

Total positioning points 19,828 Points 87,277 Points

Removed drifting points 12,452 Points 42,662 Points

Useful points 7,376 Points 44,615 Points

Total distance 1637 kilometers 1696 kilometers

6.1 Tracking Performance Evaluation

In this subsection, we firstly evaluate the overall performance of CTS against several baseline algorithms,
and then examine how much accuracy promotion each meta-component of CTS brings about.

2We explained in Sec. 4.2 that the ground truth of cellular trajectories are resolved from sniffed data, but only part of the
trajectories have ID-matched sniffed data.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 140.

Publication date: December 2017.



CTS: A Cellular-based Trajectory Tracking System with GPS-level Accuracy • 140:23

6.1.1 Performance Against Baselines. To demonstrate CTS is more suitable for tracking the mobile
device, we compare it with Newson’s Simple HMM algorithms[17], and Mohamed’s SnapNet system[10]
in terms of accuracy of segment and accuracy of distance. Besides, three weakened versions of CTS,
CTS-1,CTS-2, and CTS-3, are used to test the effects of each system module. CTS-1, and CTS-2 represent
CTS without applying noise filters and the state detection algorithms, respectively. CTS-3 is the system
without applying the improvement of HMM-based path recovery, including sector factor, U-turn penalty
and direction changing penalty.

As shown in Fig. 21, as and ad of CTS are 94.7% and 95.7%, respectively, which demonstrate that our
system achieves GPS-level accuracy for mobile device tracking. The accuracy of CTS is 30% higher than
SnapNet and 50% higher than simple HMM algorithm by absolute percentage.

SnapNet is designed for tracking task based on cellular base-station footprints. The system only knows
the base stations that the device connected, and the accuracy is intrinsically influenced by the spatial
density of base stations. Simple HMM model is appropriate for recovering the path of GPS positioning
trajectories. But it is not endurable for positioning points with large errors, which are the normal cases
in cellular positioning system.

CTS improves the accuracy through successful combination of cellular positioning and several supporting
algorithms. More specifically, the noisy positioning points are filtered out by speed-based and direction-
based noise filters. The state detection process effectively solves the drifting issues. Low sampling
rate causes long spatial interval between consecutive positioning points. This challenge is overcome by
our HMM-based path recovery algorithm. To further improve the performance, we also utilize sector
information and design penalties to eliminate U-turn and detour errors.
Note that the accuracy of distance ad is slightly lower than that of segment in case of CTS. This

is because mismatches of road segments sometimes occur at the starting and the ending points of a
trajectory, due to the inevitable positioning errors. Each mismatch only counts once when calculating
as, but a single mismatch may significantly decrease ad. However, ad is much higher than as in cases
of simple HMM, Snapnet and CTS-2. It happens when the lengths of the mismatched segments are
close to those of the correct segments. Fig. 21 also shows that ad and as drops by around 10% when
disabling noise filters or the improvements of HMM-based path recovery, and by at least 15% with the
state detection module removed.

The results above show that CTS outperforms all the five baselines in both metrics, which proves our
system is the most appropriate one for cellular trajectory tracking.

Fig. 21. Overall performance against baselines.
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6.1.2 Effects of Components of Each Module. The importance of the state detection module has been
discussed before, and now we evaluate the effects of the other two modules in detail.
First, we disable the speed-based noise filter and the direction-based noise filter, respectively, and

keep the rest of the system unchanged while measuring the tracking accuracy. We learn from Fig. 22
that as and ad both decrease by 9% by disabling speed-based noise filter. This makes sense because the
median positioning error is up to 143 meters in cellular system, making the abnormal speeds appear
frequently. Contrarily, the performance decline is rather small, which is around 3%. The reason is in
the path recovery process, the U-turn penalty could help eliminate some incorrect matches caused by
back-and-forth errors.

Fig. 22. Overall performance with and without filters.

Second, we disable three components that improves the path recovery algorithm, including sector factor,
U-turn penalty and direction changing penalty, and show the results in Fig. 23. From the results, we
observe that sector information provides more accuracy advancement than direction changing penalty,
though they are both expected to reduce detour errors. U-turn penalty proved to be the most effective
component among the three, with the increase of about 6%. Note that the U-turn penalty and direction-
based noise filter are both designed for eliminating back-and-forth errors, but the former one performs
better. Recall the situation shown in Fig. 11, xt generates a U-turn error without causing a directional
problem, because the sampling rate is too low to capture the details of direction error. Such error could
be removed by U-turn penalty.

Fig. 23. Overall performance with and without improvements of HMM-based path recovery.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 140.

Publication date: December 2017.



CTS: A Cellular-based Trajectory Tracking System with GPS-level Accuracy • 140:25

To clearly demonstrate the impact of each component of the algorithm, we list the accuracy advancement
by each of them in Table 6. The performances are evaluated by only disabling one of the components
while keeping the others functioning normally.

Table 6. Accuracy advancement of each Component.

Advancement of: Accuracy of segment Accuracy of distance

State detection 24.6% 15.5%

Speed filter 9.0% 9.5%

U-turn penalty 6.4% 6.2%

Sector info 5.5% 5.8%

Direction penalty 3.1% 3.5%

Direction filter 2.7% 3.2%

6.2 Influence of External Factors

The density of road networks and the positioning sample rate are two important external factors that
might influence the system performance. In this section, we investigate these related issues.

6.2.1 Density of Road Networks. Intuitively, the difficulties of trajectory tracking varies with density of
road networks. When the roads are sparse, the task is easier because there are only few alternative routes.
On the contrary, if the roads are dense, the positioning errors are more probable to cause confusions
in path recovery. In the downtown, ordinary city area, and suburb of Urumchi City, we select three
representative 4km × 4km-sized square areas. where the roads are dense, medium dense, and sparse,
respectively. Then we calculate the density of road and cellular sectors, and show the results in Fig. 24.

Fig. 24. Relevance between road density and sector density.

We observe from the results that the densities of road networks and cellular sectors are positively
correlated. The downtown area has 10.66km roads and 79 sectors in average per square kilometer, while
that of the suburb area are both low. We extract trajectories that pass through these areas, and evaluate
the performance of CTS and CTS without the sector factor with those trajectories. The results are
shown in Fig. 25. The result shows that the best tracking performance can be achieved in suburb area,
which verifies our intuition. The system performance is rarely influenced by the sector information,
because the regulation provided by road network structure is sufficient. While in the downtown area, the
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system performs worst. However, the sector information helps CTS achieves 7% higher accuracy in the
downtown. Because when the roads are dense, the sectors are dense as well, and the positive effect of
sector information is significant helpful where the road network is dense.

Fig. 25. Overall performance with and without sector information in different areas.

6.2.2 Sampling Interval. It is obvious that the sampling rates of trajectories are changing with time
and users. We would like to investigate how the system performance varies when the sample rate changes
with time and with users respectively. Note that for convenience in data analysis, we use the sampling
interval, the interval time between two samples, to represent the sample rate.
First, we look into the distribution of sample intervals in different time of the day. In Fig. 26, we

separate the sample intervals into six groups, and each group is denoted by a poly-line. Then we count
how many points fall into each group in different periods of time in a day. For example, if a point
is sampled 90 seconds later than the previous one, in 10:00 o’clock, then it falls into the range of
[09 : 00− 11 : 59, 60− 120sec]. The figure shows that for all the groups, the positioning points collected
in 00 : 00− 08 : 59 are much fewer than other periods, since most users are resting. In this figure, what
we concern more is the fact that the proportion of each sample interval in every period is basically the
same3.

Fig. 26. Distribution of sampling intervals during 24 hours.

3Note that, here we discard trajectories that only consist of stay points, or are too short to be matched into the road map,

making them irrelevant to this topic
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Second, according to the result above, it is reasonable to infer that the system performance will not
change sharply over time during a day. We conduct corresponding experiments, and the results are shown
in Fig. 27. The figure shows that the best accuracy occurs during 15 : 00− 17 : 59, which is only higher
than the worst case by 2.2%. This consequence is consistent with the data analysis.

Fig. 27. Overall performance in different time of the day.

Third, we examine the distribution of users in term of sampling interval. We calculate the median
sampling interval of each user during a day, and draw the bars in Fig. 28. From the figure we observe
that the most of the positioning points are sampled with 60− 240 seconds interval, indicating that how
well the system performs on these trajectories largely determines the overall performance.

Fig. 28. Distribution of users in term of median sample rate during 24 hours.

Finally, we evaluate how the tracking accuracy varies when handling trajectories with different sampling
rate, and the result is shown by the poly-line in Fig. 28. Consistent with our expectation, the group
with shortest median sample interval performs best, yielding 96.1% accuracy of segment. Although the
performance drops when the sampling interval increases, the accuracies remain at a relatively high level
in the range of 60-240 seconds. As mentioned above, this ensures that the system functions well when
dealing with most trajectories.

In summary, all the evaluation above shows that CTS outperforms its similar systems by at least 30%
in both accuracy metrics. When working with dense road networks, our system performs well with the
significant help of sector information. And sa long as the median sample interval of the trajectory is
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smaller than 300 seconds, CTS produces tracking accuracy higher than 90%. Thus, we believe this system
is most applicable one for cellular trajectory tracking among other related works.

7 CONCLUSION

In this paper, we design and evaluate a cellular-based trajectory tracking system that achieves GPS-level
accuracy. This system does not rely on input from mobile devices, and is suitable for tracking low-power
sensing devices in wide areas covered by cellular networks. According to real life experiments, our system
provides as accurate trajectory tracking as GPS-based solutions in 95.7% of cases. In summary, our work
provides an efficient and practical way to track mobile devices using cellular infrastructures. With such
accurate trajectories, we will extend this work in the future to enable automatic calibration of cellular
positioning points.
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