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ABSTRACT
Taxi-booking apps have been very popular all over the world as

they provide convenience such as fast response time to the users.

�e key component of a taxi-booking app is the dispatch system

which aims to provide optimal matches between drivers and riders.

Traditional dispatch systems sequentially dispatch taxis to riders

and aim to maximize the driver acceptance rate for each individual

order. However, the traditional systems may lead to a low global

success rate, which degrades the rider experience when using the

app. In this paper, we propose a novel system that a�empts to

optimally dispatch taxis to serve multiple bookings. �e proposed

system aims to maximize the global success rate, thus it optimizes

the overall travel e�ciency, leading to enhanced user experience.

To further enhance users’ experience, we also propose a method to

predict destinations of a user once the taxi-booking APP is started.

�e proposed method employs the Bayesian framework to model

the distribution of a user’s destination based on his/her travel his-

tories.

We use rigorous A/B tests to compare our new taxi dispatch

method with state-of-the-art models using data collected in Beijing.

Experimental results show that the proposed method is signi�cantly

be�er than other state-of-the art models in terms of global success

rate (increased from 80% to 84%). Moreover, we have also achieved

signi�cant improvement on other metrics such as user’s waiting-

time and pick-up distance. For our destination prediction algorithm,

we show that our proposed model is superior to the baseline model

by improving the top-3 accuracy from 89% to 93%. �e proposed taxi

dispatch and destination prediction algorithms are both deployed

in our online systems and serve tens of millions of users everyday.
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1 INTRODUCTION
Recent advances in GPS and 4G networks have made mobile taxi

APPs more and more popular. �ese APPs collect a large amount

of individual trajectories on a daily basis. �e collected data pro-

vide us an unprecedented opportunity to automatically discover

knowledge on user behavior, which can be used to build real time

intelligent decision making systems in di�erent applications, such

as passenger �nding [7, 12, 13, 24], taxi demand predicting [16, 17],

route planning [14, 22] and taxi order dispatching [8, 11].

�e quality of order dispatching can directly in�uence the user

experience of riders as well as taxi operating e�ciency. �us, how

to dispatch orders e�ciently is a central task. Some previous work

[3, 10] on order dispatching focused on how to �nd a nearest driver

or a shortest-travel-time driver for each individual order. When

an order comes in, such a system chooses one of the nearest dri-

vers, without judging whether these drivers were more suitable for

other orders. �erefore these methods cannot guarantee the global

shortest-travel-time for all orders. �e authors in [19] proposed a

novel model, based on a multi-agent architecture called NTuCab.

In order to minimize the waiting-time or the pick-up distance glob-

ally, this model considers each agent as a computation unit. Each

computation unit processes N order/driver pairs and each order

is dispatched to only one driver. An order will be dispatched to

another driver if the matched driver does not accept it.

A drawback of the methods mentioned above is the long dispatch

time and low success rate, because the methods do not optimize

the total success rate. At Didi Chuxing
1
, millions of drivers pro-

vide transportation services for over ten million passengers every

day. In rush hours, Didi Chuxing needs to match over a hundred

thousand passengers to drivers every second. �erefore the total

success rate of these orders becomes the main metric to evaluate

the performance of the underlying order dispatch system.

In this paper, we propose a novel combinatorial optimization

model to solve the order dispatch problem at Didi Chuxing. In this

model, we dispatch one order to several drivers with the goal of

maximizing the total success rate of these orders. When multiple

drivers receive the same order, the �rst one to accept gets the order.

If an order is not accepted, it enters the next round of dispatching

until it is accepted or canceled.

1
h�p://www.didichuxing.com
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An order in the dispatching system typically has three impor-

tant elements - departure time, origin and destination of the order.

Generally, we simply choose the current time and rider location

as the departure time and departure place of an order, which is

suitable for most taxi-calling situations. However, di�erent people

tend to go to very di�erent destinations. Even for the same person,

the destinations may be di�erent at di�erent departure times and

locations. However, it brings extra work for the users to enter the

full name of the destination. �erefore, the user experience can

be greatly enhanced if the intended destination can be accurately

predicted when a user opens the APP. Most of the current methods

use the trajectory data of all users to train a model, and then use the

information of the current trip, combined with some auxiliary infor-

mation, such as time, tra�c condition etc., to predict the intended

destination [9, 21, 23].

A typical approach was given in [20], which proposed a neural

network based on multi-layer perceptions that takes input data

such as the user’s initial trajectory data and other meta-data such

as driver id, user information, travel departure time, etc. A�er

training, it is possible to predict most of the itineraries. However,

the model does not rely much on problem speci�c information

that can be derived from the data. It heavily depends on the initial

continuous trajectory data of the itinerary. Once this part of the

data is discarded, the prediction accuracy is greatly reduced. �is

was also shown in the experiments of the paper. �e work in [4]

employed the driver’s own historical trip data to train an HMM

model. �e model divides the time of day into a few subjective

segments such as morning, noon, and evening, and this treatment

destroys the continuity of time.

Previous approaches are not applicable for the destination pre-

diction problem at Didi Chuxing, because the prediction is required

as soon as a passenger opens the APP, but the trajectory data of the

current trip cannot be obtained immediately. Moreover, unlike most

previous methods that try to minimize the distance between the

predicted destination and the actual destination, we aim to identity

the exact destination that the user wants to go. In fact, even if the

predicted destination is an alias of the true destination, it is highly

likely that the passenger will regard it as an unfamiliar location, and

simply inputs the address manually. �erefore, our system takes the

set of each user’s historical travel destinations as the candidate set

for destination prediction. Personal historical trip statistics is very

di�erent among di�erent people. Take year 2015 as an example,

the annual taxi booking usage per user is about twenty for users

who have used Didi Chuxing at least once. However, it is unevenly

distributed as high-frequency users opened the APP daily while

low-frequency users opened the APP less than ten times in one

year. It is a major challenge to derive accurate personal statistics

from such sparse data.

By analyzing taxi booking behavior of a huge amount of pas-

sengers, we obtain some interesting observations. Based on theses

observations, we propose a Bayesian destination prediction model,

which considers departure longitude, latitude and departure time

under the ternary Gaussian distribution. �e model is trained us-

ing personal historical trip data. �e trained model can calculate

the probability of users’ historical destinations based on departure

longitude, latitude and departure time. It then provides a list of the

predicted destinations ranked by the probability.

�e rest of this paper is as follows: Section 2 presents the taxi

dispatch system and Section 3 introduces the destination prediction

system, Section 4 provides experiments to show the e�ectiveness

of the two models and we conclude this paper in Section 5.

2 ORDER DISPATCH SYSTEM
We �rst introduce some notations. �e goal of our order dispatch

system is to maximize the success rate, denoted as ESR .

If there are N orders to be dispatched to M drivers, we represent

the dispatch result as a matrix

*...
,

a11 · · · a1M
... ai j

...

aN 1 · · · aNM

+///
-

,where 1 ≤ i ≤ N , 1 ≤ j ≤ M,

and ai j =



1 order i is dispatched to driver j,

0 order i is not dispatched to driver j .

In this scenario, a driver receives only one order at each round,

while one order can be dispatched to several drivers. �is imposes

the following constraint: ∀j,
∑N
i=1

ai j ≤ 1.

In Didi Chuxing’s business scenario, an order is dispatched to

a number of drivers, and each driver decides whether or not to

accept it according to his or her own preference. For each order,

whether it is accepted by one of the drivers is directly related to

each driver’s probability of acceptance. �us, the key problem for

order dispatching is to estimate the probability of each driver’s

acceptance of an order. If we can estimate the matrix with its ele-

ments indicating the probability of each driver accepting each order,

then we can estimate the probability of an order to be accepted by

one of the drivers. �erefore, we divide the order dispatch model

into two sub-models. One model predicts each driver’s action, in

which we estimate the probability of a driver accepting an order.

Another model formulates an optimization problem for maximizing

the target ESR using the estimated acceptance probabilities, and

then solves the underlying optimization problem.

2.1 �e model of Driver’s Action Prediction
Since the driver’s action takes two values: accept or reject (not

accept), we use a 0-1 valued binary variable y to denote the action

outcome, where 1 stands for accept and 0 stands for reject. We

assume that the driver’s action is subject to an independent and

identical probability distribution.

We use pi j to denote the probability of order oi accepted by

driver dj . �e probability depends on many factors, such as the

monetary value of the order, the driving distance and direction, etc.

Such information can be encoded into a feature vector xi j , which

is associated with the order oi , the driver dj , and the interactions

between them. Given xi j , we would like to estimate the acceptance

probability as follows:

pi j = p (y = 1|xi j ).

�is formulates the problem of predicting driver’s action as

a typical binary classi�cation problem, and the classi�er can be

trained using features produced from historical driver-order pairs

〈oi ,dj 〉 with the associated outcomes.
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Table 1: Results of LR and GBDT.
Beijing

Model ACC AUC Sensitivity Speci�city

LR 0.7822 0.8680 0.7372 0.8257

GBDT 0.7571 0.8549 0.8579 0.6378

Shanghai
Model ACC AUC Sensitivity Speci�city

LR 0.7632 0.8470 0.7332 0.7933

GBDT 0.7443 0.8438 0.8444 0.6258

In this work, we tried two popular models: linear logistic regres-

sion (LR) [5] and gradient boosted decision tree (GBDT) [6, 15]. We

train separate models for di�erent cities and evaluate both methods

in terms of Accuracy (ACC) and Area under the Curve of ROC

(AUC). Experimental results for Beijing and Shanghai are shown in

Table 1.

We note that both LR and GBDT are widely used. Our experi-

ments show that for our data, LR is slightly more accurate. �ere-

fore, we choose LR as the prediction model in our system, where

the probability pi j can be wri�en as

pi j = p (y = 1|oi ,dj ) =
1

exp(−wTxi j )
. (1)

Our system uses SGD (Stochastic Gradient Descent) to train the

model parameters [2, 25] . �e prediction model considers various

factors, which can be summarized as follows:

• Order-Driver related features: the pick-up distance, the

broadcasting counts of the order to the driver, whether the

order is in front of or behind the driver’s current driving

direction.

• Order related features: the distance and the estimated time

arrival (ETA) between the origin and the destination, the

destination category (airport, hospital, school, business

district, etc.), tra�c situation in the route, historical order

frequency at the destination.

• Driver related features: Long-term behaviors (include his-

torical acceptance rate of a driver, active locations of a

driver, preference of di�erent broadcast distances of a dri-

ver, etc.) and short-term interests of a driver such as orders

recently accepted or not, etc.

• Supplemental features, such as day of the week, hour of

the day, number of drivers and orders nearby.

2.2 �e Combinatorial Optimization model
In our system, one order can be dispatched to several drivers, thus

all these drivers contribute to the probability of order acceptance.

Assume that there are N orders to be dispatched to M drivers, then

the probability of an order oi to be accepted is:

Ei = 1 −

M∏
j=1

(1 − pi j )
ai j , (2)

where pi j is de�ned in Eq. (1)

and ai j =



1 order i is dispatched to driver j,

0 order i is not dispatched to driver j .

Based on the notations above, we can formulate the success rate

ESR as

ESR =

∑N
i=1

[1 −
∏M

j=1
(1 − pi j )

ai j
]

N
, (3)

As we mention before, there is a constraint in our model:

∀j,
N∑
i=1

ai j ≤ 1,

which means that each driver can receive at most one order at a

time, leading to the following order dispatch problem:




max

ai j
ESR =

∑N
i=1

[1 −
∏M

j=1
(1 − pi j )

ai j
]

N
,

s.t. ∀j,
N∑
i=1

ai j ≤ 1, ai j ∈ {0, 1}.

�is is a constrained combinatorial optimization problem [18].

We next show how to solve this problem.

Many combinatorial optimization problems are NP hard, and

there is no e�cient general algorithm to solve this class of prob-

lems in polynomial time. A typical approach is to use a heuristic

algorithm to �nd an approximate solution. Commonly used meth-

ods include hill-climbing methods, genetic algorithms, simulated

annealing algorithms, etc. By balancing the accuracy and the per-

formance, we choose a hill-climbing method to solve the problem.

Algorithm 1 below describes the detailed procedure.

Algorithm 1 Proposed HillClimbing Algorithm

1: procedure HillClimbing(A, P )

2: for i ← 1,M do
3: D[i]← j with the maximum probability P[i][j]
4: end for
5: for i ← 1,N do
6: E[i]← success rate of order i with D
7: E0← averaдe (E[i])
8: end for
9: for i ← 1,N do

10: U ← drivers that are not assigned order i
11: for j ← 1, len(U ) do
12: k ← U (j )
13: if replace D[k] with order i , E0 increases then
14: replace D[k] with order i
15: E[i]← success rate of order i with D
16: E0← averaдe (E[i])
17: end if
18: end for
19: end for
20: end procedure

3 DESTINATION PREDICTION
�is section describes our proposed destination prediction system.

By analyzing a large number of Didi Chuxing users’ taxi booking
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Table 2: Notations used in this paper.

Symbol Meaning Range

T time of day [0, 24)

D Day of the week workday, holiday

Lnд Departure Longi-

tude

[-180, 180]

Lat Departure

Latitude

[-90, 90]

Y Description Set of User Historic Destina-

tions, {y1,y2,…,yi ,…,yn }

behaviors, we have discovered some interesting pa�erns: (1) �e

same user tends to go to the same destination at similar times.

Speci�cally, the departure time (time of day) is the most important

factor for predicting a user’s intended destination, followed by the

departure latitude and longitude. Interestingly, the date variable

(workday or holiday) can separate the data into two groups with

di�erent characteristics: workday destinations are concentrated

on home and workplace; holiday destinations are concentrated

on shopping centers, and entertainment places, etc. (2) �e same

user tends to go to a �xed set of locations even for shopping in

the weekends, except for occasional emergencies such as doctor

appointments, business travel, etc. (3) �e order’s location provides

useful information for destination prediction. Other information

such as the driver information, tra�c situation, driving speed, etc.

have weak correlations with the destination.

Based on the above observations, we propose to model the prob-

ability distribution of a user’s destination using Bayesian rule, in

which the user’s historical data such as departure time, departure

latitude and longitude are utilized.

3.1 Model Description
We �rst introduce some notations in Table 2.

We observe that D has only two categories which can be used to

divide the user’s historical data into two clusters with very di�erent

behaviors, so we preprocess the data by clustering using the feature

D. In addition, we use each order’s date in the historical data as

a timeliness factor to weight the importance of training data (We

omit the details here due to the limited space of the paper). �e aim

of our proposed method is to model the probability distribution

of a user’s destination. To achieve this goal, we utilize Bayesian

formula to express the conditional probability of the destinations

{y1,y2,…,yi ,…,yn }, as follows:

p (Y = yi |X ) =
p (X |Y = yi )p (Y = yi )∑n
j=1

p (X |Y = yj )p (Y = yj )
,

where X = (T ,Lnд,Lat ) denotes the departure time, departure

longitude and latitude.

We can estimate p (Y = yi ) using the user’s historical trip data

as follows:

p (Y = yi ) =
freq(yi )∑n
j=1

freq(yj )
.

Figure 1: Departure time histogram of Sanlitun (a place in
Beijing).

�e remaining issue is to estimate the joint distribution of the

departure time and location (longitude and latitude) given the desti-

nation, that is: p (T ,Lnд,Lat |Y = yi ). We next show how to achieve

this goal step by step. We �rst study the conditional probability

distribution p (T |Y = yi ) of departure time T , given the destina-

tion yi . We will then include longitude and latitude to obtain a

joint conditional probability distribution for (T ,Lnд,Lat ), given

the destination yi .

3.2 Conditional distribution of departure time
given destination

Figure 1 shows the histogram of a sample user’s departure time cor-

responding to the destination Sanlitun. �e shape of the histogram

is very similar to that of a Gaussian distribution. By studying many

other users’ cases, we have similar observations. �erefore, we use

Gaussian distribution to estimate the conditional probability of the

departure time T :

T |Y = yi ∼ N (µi ,σ
2

i ).

We note that variable T takes circular values from hour 0 to 23,

and then repeat. �erefore the mean µi and variance σ 2

i can not

be estimated using traditional methods. For example, if times are

8:00, 9:00, 10:00, then the average is 9:00, which can be calculated

as (8 + 9 + 10)/3; but if they are 3:00, 15:00, 21:00, the average is

21:00, not (3 + 15 + 21)/3 = 13. We next show how to estimate the

mean µi and the variance σ 2

i .

Notice that the time variable is a circular quantity. A widely used

method to compute the mean of circular quantities is to transform

all circular variables into unit vectors, and compute the average of

the vectors, then transform the result back to the original circular

representation. Given the times t1, t2, ..., tm , the mean µ can be

expressed as:

µ =
24

2π
· arctan[

1

m

m∑
k=1

sin(
2π

24

· tk ),
1

m

m∑
k=1

cos(
2π

24

· tk )].

�is method is simple and intuitive, but in some cases the re-

sults obtained deviate from the true value (e.g. mean of the three

times 00:00:00, 00:00:00, 03:00:00 is 01:00:00, but the vector mean is

00:58:33). Moreover, in certain cases there are no results (e.g. when∑m
k=1

sin( 2π
24
· tk ) = 0 and

∑m
k=1

cos( 2π
24
· tk ) = 0). To remedy the
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above mentioned problems, we propose another method to calcu-

late the mean of departure time, and this method is also applicable

to the mean of arbitrary circular numerical variables.

Our method is based on the following observation. �e mean

of the departure times can be obtained by solving the following

constrained quadratic optimization problem:




min

µ

m∑
k=1

[distance(tk , µ )]
2,

s.t. µ ∈ [0, 24),

(4)

where distance(t1, t2) denotes the distance of two circular variables

t1 and t2, which is de�ned as follows:

distance(t1, t2) =

{
|t1 − t2 | if |t1 − t2 | ≤ 12,

24 − |t1 − t2 | if |t1 − t2 | > 12.

More concisely, we rewrite the above formula as

distance(t1, t2) = −|( |t1 − t2 | − 12) | + 12.

Substituting the above equation into Eq. (4), we obtain




min

µ

m∑
k=1

[|( |tk − µ | − 12) | − 12)]2,

s.t. µ ∈ [0, 24).

By solving the above optimization problem, we obtain the desired

mean µ. Similar ideas can also be applied to estimate the variance:

σ 2 =
1

m − 1

m∑
k=1

[|( |tk − µ | − 12) | − 12]
2.

3.3 �e joint conditional distribution of
departure time, departure latitude and
longitude for a given destination

For most users, one can obtain highly accurate prediction of in-

tended destination based on departure time alone. Figure 2 shows

the probability distribution of the departure time for two di�erent

destinations of a passenger. We �nd that the departure time of the

passenger to Zhongguancun is concentrated around 11:00, and the

departure time to Zhicunlu is around 19:00. If the user opens the

APP in the morning, then there is a high probability of going to

Zhongguancun; in the evening, there is a high probability of going

to Zhicunlu.

For some other users, it is necessary to integrate other infor-

mation to obtain high-precision prediction. Figure 3 presents a

typical example which shows that the departure time distributions

of Digital Manor and Libao Plaza have a considerable amount of

overlap. �erefore, for this user, it is impossible to give an accurate

prediction of the destinations based on the departure time alone.

Figure 4 shows the three-dimensional distributions of the de-

parture time, departure longitude and latitude (T ,Lnд,Lat ) for the

two di�erent destinations Digital Manor and Libao Square of this

user. We can see that the three-dimensional distributions can easily

distinguish the two di�erent destinations.

In order to �nd the appropriate model to describe this three-

dimensional joint distribution, we analyze the joint distribution

sca�er plot of the departure time and the departure longitude and

Figure 2: Departure time distributions of Zhongguancun
and Zhicunlu (places in Beijing).

Figure 3: Departure time distributions of Digit Manor and
Libao Plaza (places in Beijing).

Figure 4: Departure time, longitude and latitude distribu-
tions of Digit Manor and Libao Plaza (places in Beijing).

latitude (T ,Lnд,Lat ) for each destination of each user. �e distribu-

tion is consistent with the shape of a three-dimensional Gaussian

distribution. �erefore, we can assume that given a user and an

intended destination,

Lat ,Lnд,T |Y = yi ∼ N3 (µi , Σi ). (5)

In order to verify this hypothesis, we employ the idea of goodness

of �t test from classical statistics for normality test. We still use

the user’s own historical data to estimate the distribution parame-

ters (mean vector and covariance matrix). It should be noted that,
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Lat ,Lnд,T are all circular quantities.�e quadratic programming

method described earlier can thus be used to estimate the mean

vector µ and the covariance matrix Σ .

3.4 �e complete steps of destination
prediction based on departure time,
departure latitude and longitude.

�e complete steps of destination prediction are:

Step 1. Estimate µi , Σi for each destination of a user.

Step 2. Calculate p (Y = yi ):

p (Y = yi ) =
freq(yi ))∑n
j=1

freq(yj )
,

and compute p (T ,Lat ,Lnд |Y = yi ) using Eq. (5).

Setp 3. Calculate p (Y = yi |T ,Lat ,Lnд) using Bayesian rule:

p (Y = yi |T ,Lat ,Lnд) =

p (T ,Lat ,Lnд |Y = yi )p (Y = yi )∑n
j=1

p (T ,Lat ,Lnд |Y = yj )p (Y = yj )
.

Step 4. Rank the destinations by p (Y = yi |T ,Lat ,Lnд) and

provide them as a list.

4 EXPERIMENT
In this section, we evaluate the proposed order dispatch and destina-

tion prediction models. For the order dispatch model, we compare

our model with two other methods using multiple evaluation cri-

teria. For the destination prediction model, there is no published

methods ��ing our task. �us, we compare our proposed method

with a simple method based on KNN which was used in Didi Chux-

ing’s online systems before the proposed system was deployed

online.

4.1 Experiments of order dispatch system
We perform experiments to evaluate the order dispatch system

based on the following considerations. First, to design the evalua-

tion metrics, we take the general taxi order dispatch business into

consideration. We then compare our model with two other models

widely used in the industry [10, 19]. We split the data randomly into

three random partitions, and compare the performance in terms of

the metrics in Table 3. In addition, we study the detailed behaviors

of di�erent models and present some interesting observations.

4.1.1 Evaluating order dispatch models. �e order dispatch sys-

tem a�ects many core metrics, and among these metrics, we choose

some key business metrics used in [1], which are similar to what

we have used in our system. We list them in Table 3 [1].

4.1.2 Experimental methods. We compare our proposed method

with two models that are widely used in the industry: one is to

dispatch each order to the driver most suitable for the order [3, 10].

�e other is to dispatch a batch of orders to drivers, so that the

overall waiting time is minimized [19].

Model 1: [10] proposed a method of computing the shortest driv-

ing time for drivers in real-time tra�c environment. [3] proposed

a method of order dispatch based on the A* algorithm for optimal

Table 3: Measurements used in our comparison.

Measurement Abbrev.

Percentage of served calls (Success Rate) SR

Averaged pick up time(the time from the order

accepted by a driver to the passenger ge�ing on

the car)

APT

Averaged dispatch time (the time from the pas-

senger make the order to one driver accepted

the order)

ADT

Percentage of cancelled calls (Cancellation Rate) CR

Average total number of calls served by each

cab (Fleet Utilization)

FU

Table 4: Number of drivers and orders.
Driver Number Order Number

Flow 1 27268 345631

Flow 2 27310 345683

Flow 3 27297 345711

Table 5: Results of three models.
SR(%) APT (min) ADT (sec) CR(%) FU

Model 1 79.8 4.538 87 24.1 4.32

Model 2 80.1 4.163 106 22.8 4.47

Our Model 84.4 4.169 89 23.2 4.71

route planning. Based on these studies, we used a learning-to-rank

based method, which uses historical data to obtain a formula to cal-

culate the matching scores of drivers and orders. We then dispatch

an order to the driver who has the highest matching score (Note

that this method was used at Didi Chuxing until the method of this

paper was proposed).

Model 2: [19] proposed a multi-agent based order dispatch sys-

tem, called NTuCab. �e system is superior to most other systems

in the sense that it optimizes the overall waiting time.

We conduct the experiments using one day’s data in Beijing (the

largest city in China). �e data contain 1 million orders and 80

thousand drivers. We randomly divide the data evenly into three

parts (Flow 1, Flow 2, and Flow 3) based on mobile phone numbers.

�e number of drivers and the number of orders are summarized

in Table 4. We run Model 1, Model 2 and our proposed model in

Flow 1, Flow 2 and Flow 3, respectively.

4.1.3 Experimental results and analysis. A�er running the sys-

tems online for one day, we report the following evaluation metrics

for the three models in Table 5. �e results show that our model is

signi�cantly be�er than the other two in terms of the key evalu-

ation metric SR. On the metric of average-of-pick-up-time (APT),

our model is almost identical to model 2 because model 2 tries to

optimize APT, while in our model, APT is an important factor in

determining SR. On the average-of-dispatch-time (ADT) metric,

model 2 is even worse than model 1 because in [19], there is a key

constraint on the model 2: each dispatch unit of the model can only

handle the same number of drivers and orders. �is implies that

many orders or drivers can only wait for the next round of dispatch,

leading to a longer dispatch-time.
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Figure 5: Comparison of success rates of three models.

Table 6: Match score between each order/driver pair.

Driver

Order

1 2 3 4 5

1 2.85 1.21 1.80 3.27 3.53

2 3.00 3.89 3.88 1.46 4.02

3 3.32 3.91 3.68 2.77 3.94

4 3.83 2.86 1.36 3.75 2.16

5 3.35 3.12 3.22 2.75 1.66

6 3.76 1.61 3.74 3.09 2.12

7 1.07 2.53 1.05 2.17 2.65

8 1.34 2.87 1.72 3.01 3.30

9 2.01 0.97 1.24 0.64 2.33

10 3.35 3.25 3.14 2.18 2.40

Figure 5 plots the success rates of the three models versus time.

It is clear that at night (23:00pm to 5:00am the next day), when

there are relatively few car bookings, all three models had higher

success rates. �is is because there are plentiful of free vehicles

for relatively few bookings, and with su�cient supplies, it does

not ma�er what order dispatch model to use. With the increase

in the number of bookings, especially in the rush hours (7am -

9am and 17pm -19 pm) and evening time a�er dinner (21pm to

22pm), the success rate is relatively low because the number of car

bookings increases signi�cantly, together with a reduction of the

actual available free vehicles, resulting in an imbalance of supply

and demand. In this case, our model yields a signi�cantly higher

success rate than the other two models.

4.1.4 Case Study. �e above experimental results show that the

success rate of our model is signi�cantly be�er than those of the

other two models. In order to illustrate the di�erences of the three

models, we constructed a synthetic data set containing 10 drivers

and 5 orders, and analyze how these three models dispatch the 5

orders to the 10 drivers.

Model 1 �rst calculates the matching score of all candidate orders

for each driver, and then assigns the highest scored order to the

driver. As can be seen from Table 6, order (5) achieves the highest

scores for drivers (1, 2, 3, 7, 8, 9), while order (1) achieves the highest

score for drivers (4, 5, 6, 10). �us, in accordance with the principle

of assigning the highest order for each driver, order (5) will be

assigned to the drivers (1, 2, 3, 7, 8, 9) and order (1) will be assigned

to the drivers (4, 5, 6, 10). �e orders (2, 3, 4) can only be dispatched

Table 7: Dispatch results for Model 1.
Driver Dispatched order Match Score

1 5 3.53

2 5 4.02

3 5 3.94

4 1 3.83

5 1 3.35

6 1 3.76

7 5 2.65

8 5 3.30

9 5 2.33

10 1 3.35

Table 8: Pick-up distance(meter) between each order/driver
pair.

Driver

Order

1 2 3 4 5

1 737 1836 1451 464 381

2 649 166 154 1605 83

3 464 168 290 796 143

4 125 803 1726 167 1238

5 427 648 565 797 1556

6 160 1581 226 569 1252

7 1844 1003 1910 1145 924

8 1700 816 1514 648 542

9 1258 1980 1789 2100 1120

10 415 549 597 1131 1073

Table 9: Dispatch results for Model 2.
Driver Dispatched Order Pick-up Distance

1 4 464

2 5 83

3 2 168

4 1 125

5 3 565

6 1 160

7 2 1003

8 4 648

9 5 1258

10 3 597

a�er the ten drivers have made choices (accept or reject) for orders

(1) and (5), leading to relatively low e�ciency. �is is precisely

because this order dispatch model considers each driver and order

separately, without taking the overall situation into consideration.

�e dispatch result for Model 1 is shown in Table 7.

�e dispatch results of Model 2 are shown in Table 9 according

to the goal of minimizing the overall pick-up distance (in Table 8).

We see that di�erent from model 1, model 2 considers all drivers

and orders as a whole, and thus each order can be dispatched to the

same number of drivers. Because the model tries to minimize the

overall pick-up distance, the total pick-up distance of the model’s

output is the shortest among all three models.
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Table 10: Accept probability between each order/driver pair.

Driver

Order

1 2 3 4 5

1 0.019 0.007 0.01 0.025 0.029

2 0.021 0.037 0.037 0.008 0.04

3 0.026 0.037 0.032 0.018 0.038

4 0.035 0.019 0.007 0.034 0.012

5 0.026 0.023 0.024 0.018 0.009

6 0.034 0.009 0.034 0.022 0.012

7 0.006 0.016 0.006 0.013 0.017

8 0.007 0.019 0.009 0.021 0.025

9 0.011 0.006 0.007 0.005 0.014

10 0.026 0.025 0.023 0.013 0.014

Table 11: Dispatch results for the proposed model.
Driver Dispatched Order Accept Probability

1 5 0.029

2 5 0.040

3 2 0.037

4 4 0.034

5 1 0.026

6 3 0.034

7 2 0.016

8 5 0.025

9 5 0.014

10 1 0.026

In the proposed model, we �rst estimate the probability of each

driver accepting each order by Eq. (1) (see Table 10 for detailed

results). �en, according to the acceptance probability matrix, we

dispatch orders to drivers such that the overall success rate is max-

imized by following Eq. (3) (See detailed results in Table 11).

Next, we analyze the di�erences between the expected results

for each order and the overall success probability from the three

models. We use Eq. (2) and the acceptation probability in Table

10 to estimate the success probability of each order in the three

models (results are shown in Table 12). For model 1, we see that the

orders (1, 5) have higher acceptance probabilities, and the orders

(2, 3, 4) are not sent to any driver, resulting in a probability of 0.

�us the overall probability of success is low, (0.116 + 0 + 0 + 0 +

0.138) / 5 = 5.08%. Model 2 considers the orders and drivers as a

whole, and optimizes the overall pick-up distances to obtain the

dispatch outcome. However, minimizing the pick-up distance is not

exactly equivalent to maximizing the success rate, since the driver’s

acceptance of an order depends not only on the pick-up distance but

also on other factors such as order revenue, etc. Its overall success

probability is (0.068 + 0.052 + 0.046 + 0.045 + 0.053) / 5=5.28%. For

our model, the success rate is the optimization criterion, and the

dispatch result achieves the highest success probability of (0.051 +

0.052 + 0.034 + 0.034 + 0.104) / 5 = 5.5%.

It should be noted that the success probabilities above are signif-

icantly di�erent from the success rates in Table 5. �e success rates

in Table 5 are the actual results produced by di�erent models from

the online system at Didi Chuxing, while the success probabilities

above are the simulation results of di�erent models on the same

Table 12: Success probability of each order by three models.

Model

Order

1 2 3 4 5

Model 1 0.116 0 0 0 0.138

Model 2 0.068 0.052 0.046 0.045 0.053

Proposed Model 0.051 0.052 0.034 0.034 0.104

Figure 6: Top-1, top-2 and top-3 accuracies of our proposed
model and the baseline model.

data (include only �ve orders and ten drivers), jointly considering

the estimated driver acceptance probability.

4.2 Experiments for destination prediction
As mentioned before, most of the existing destination prediction

models were based on some meta-data and the ongoing trip itinerary

data. However, at Didi Chuxing the destination prediction happens

before a passenger creates an order. Speci�cally, the prediction

system is called as soon as the Didi Chuxing APP is started. At that

time, only the passenger’s current location, current time, passenger

ID and other meta-data can be obtained. �us, existing methods

[4, 9, 20, 21, 23] are not applicable to the scenario at Didi Chuxing.

Before the proposed destination prediction model was deployed

in our online system, there is a baseline model used in Didi Chux-

ing online system, which employs the K-nearest neighbor method

(K=100) based on two features: departure time and location. We

train both models on 3 months’ taxi data in Beijing and compare

our proposed model with the baseline model in terms of top-1, top-

2 and top-3 accuracies. Experimental results on the test data set

including data for one week are presented in Figure 6 . We observe

that our proposed model outperforms the baseline model by a large

margin.

We can observe from the �gure that our proposed destination

prediction model achieves a high accuracy about 93%, which is 4%

higher than the baseline model on top-3 accuracy. �e performance

is reasonable because for any user, there will always be some un-

predictable events such as seeing a doctor, travel, etc., moreover,

there are many new users and for whom the historical destination

statistics is not su�ciently high.

We further analyze the results from di�erent days of the week

and �nd the following pa�erns: (1) �e prediction performance on

weekends (Saturdays and Sundays) is lower than that on work days
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(Monday to Friday). �is is because on work days, user’s travel

pa�erns are relatively regular, mostly between work and home; on

weekends, travel pa�erns will be irregular, such as shopping, enter-

tainment etc. (2) On work days, the highest accuracy is achieved on

Wednesday, while accuracy is relatively low on Monday and Friday.

From the data, we found that for many users, private events and

other irregular travels occurred on Friday night and Monday morn-

ing. (3) On weekends, Saturday’s trip is slightly more uncertain

relative to Sunday. Our statistics shows that many personal travels,

such as visiting relatives and friends, happen on Saturday mornings.

�e return trips are o�en on Sunday a�ernoons. For these users,

the Saturday travel destination is relatively random (friends and rel-

atives, transit stations, etc.), and Sunday’s destination is relatively

focused (home).

5 CONCLUSION AND FUTUREWORK
In this paper, we have proposed a novel order dispatch model which

has been deployed in the online system at Didi Chuxing. �e pro-

posed model aims to maximize the global success rate and thus

optimizes the overall tra�c e�ciency and delivers the best user

experience. We formulate the order dispatch model as a combinato-

rial optimization problem, in which a key ingredient is to estimate

the probability of a driver accepting an order. We employ logistic

regression to estimate the probability. To further enhance users’

experience, we develop a destination prediction model to predict a

destination list when a user starts the app. We formulate the prob-

lem using the Bayesian framework based on users’ historical data

including departure time, latitude and longitude of the departure

place. Experimental results produced from Didi Chuxing App show

that our proposed order dispatch model is signi�cantly be�er than

the state-of-the-art models in terms of the success rate which is

the most important metric in the order dispatch system. Moreover,

the proposed model performs much be�er in terms of many other

metrics such as users’ waiting-time, pick-up distance, averaged dis-

patching time, cancellation rate and �eet utilization. Experimental

results also show that our destination prediction method is superior

to the baseline model.

In the future, we will further investigate some interesting prob-

lems in the following aspects: (1) �e non-convex problem in the

proposed order dispatch model makes it di�cult to �nd a glob-

ally optimal solution. We plan to identity a convex surrogate and

develop a fast optimization algorithm to solve the corresponding

optimization problem. (2) We will further improve the destination

prediction model such that the model is able to discover a new des-

tination accurately even if the true destination has never appeared

in the user’s historical data.
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