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ABSTRACT
This paper proposes a new method that makes it easy for us
to construct a positioning model for device-free passive in-
door localization by using model transfer techniques. With
device-free passive indoor positioning, a wireless sensor net-
work is used to detect the movement of a person based on
the fact that RF signals transmitted between a transmitter and
a receiver are affected by human movement. However, be-
cause device-free passive indoor positioning relies on ma-
chine learning techniques, we must collect labeled training
data at many training points in an end user’s environment.
This paper proposes a method that transfers a signal strength
model used for locating a person obtained in another environ-
ment (source environment) to the end user environment. With
the transferred models, we can construct a positioning model
for the end user environment inexpensively. Our evaluation
showed that our method achieved almost the same position-
ing performance as a supervised method that requires labeled
training data obtained in an end user’s environment.
Categories and Subject Descriptors: H.3.4 Information storage and re-
trieval: Systems and software; I.5.2 Design Methodology: Pattern analysis.
Keywords: Indoor positioning, device-free passive positioning, model trans-
fer.

INTRODUCTION
Due to the recent proliferation of wireless LAN communica-
tions, the price of Wi-Fi modules has fallen in recent years
and this has triggered many indoor positioning studies based
on Wi-Fi technologies. Wi-Fi based indoor positioning stud-
ies attempt to estimate the position of a person who possesses
a Wi-Fi signal receiver such as a smart phone. This kind of
indoor positioning method is useful for such applications as
indoor navigation systems for underground malls and shop-
ping malls. However, because this method assumes that a
user always carries a signal receiver, it is difficult to apply
it to applications for daily living such as the surveillance of
an independently living elderly person and smart homes au-
tomation. Recently, a device-free passive indoor positioning
technique has been studied that does not require the subject
to carry a signal receiver [30, 22, 4, 11].
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In device-free passive indoor positioning, a wireless sensor
network is used to detect changes in the environment and
track the location of a person passively [30]. The device-
free passive indoor positioning concept relies on the fact that
RF signals are affected by changes in the environment, i.e.,
human movement. We place sensor nodes that continually
record signal strength from a signal transmitter, and these sig-
nals are used to detect the changes in an environment and lo-
cate a person. Because the human body interferes with wire-
less signal transmissions, the signal strength received by a
sensor node installed in an indoor environment depends on
the position of the person in the indoor environment. Because
multiple sensor nodes are installed in the environment, the set
of received signal strength values (signal strength vector) ob-
tained from the sensor nodes at time t depends on the position
of the person at time t. Therefore, the vector is considered
to be a fingerprint of the position. Fingerprinting techniques
employ a set of such fingerprints to locate a person.

Because the fingerprinting approach relies on machine learn-
ing techniques, it consists of a training phase and a test phase.
In the training phase, Wi-Fi signals (i.e., the unique identi-
fiers of signal transmitters, the unique identifiers of signal re-
ceivers, and the received signal strengths from transmitters)
are observed when a person is at known coordinates in a tar-
get environment. Then, the observed fingerprints are used
as training data to learn an indoor positioning model. The
positioning model estimates a person’s coordinates by using
signal strength data observed by the receivers (sensor nodes).
However, in order to learn the indoor positioning model, we
should collect labeled training data at many positions in the
target environment. Collecting such training data in an end
user’s house is very costly and impractical because the end
user has to input his/her coordinates at many training points
by using an input device such as a smart phone. In this study,
we try to construct an indoor positioning model for a target
environment without using any labeled training data obtained
at the target environment, by transferring a signal strength
model from other environments (source environments) to the
target environment. By doing so, we can easily construct a
positioning model for an end-user environment by re-using
labeled training data obtained from several source environ-
ments in advance. This approach is typically used in activ-
ity and speech recognition studies where labeled data from
source users (speakers) are used to train recognition models
in order to reduce the burden on end users.

The above-mentioned existing passive positioning studies
mainly use raw signal strength data (mean strength within a
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time window) to construct a positioning model. However, be-
cause the signal strength changes according to various envi-
ronmental factors such as changes in humidity and tempera-
ture, and the positions of house furnishings [2, 15, 1], device-
free passive indoor positioning based on raw signal strength
values (or mean values) in real environments is reportedly im-
practical [16]. Therefore, in the same way as recent device-
free passive positioning studies [16], this study employs the
variance of signal strength values within a sliding time win-
dow. Because water makes up most of the human body, when
a person passes between a signal transmitter and a signal re-
ceiver, the signal strength received by the receiver changes,
and consequently the variance value of the signal strengths
increases. Recent studies have attempted to detect a person
passing between a transmitter and a receiver by detecting the
increase in the variance value in order to locate that person
with sub-room-level accuracy. On the other hand, this study
tries to achieve more accurate positioning by detecting a posi-
tion (point) on a line segment connecting the transmitter and
the receiver that the person passes, e.g., a person passes three
meters from the receiver. We construct a model for estimat-
ing the passing point by using training data obtained in an-
other environment (source environment), and we then transfer
the model to the target environment. Furthermore, because
device-free passive positioning methods can estimate a per-
son’s position only when the person passes between a trans-
mitter and a receiver, we also attempt to track the position
using a particle filter, even when a passing is not detected.

The variance values that change when a person passes be-
tween a transmitter and a receiver depend on such factors as
whether or not there is an obstacle such as a wall between the
transmitter and the receiver, and the material of the obstacle.
In this study, we find a pair consisting of a transmitter and
a receiver in a source environment that has a similar signal
strength feature to that of a pair in a target environment based
on unlabeled sensor data obtained in the target environment
and floor plans (layout of walls) of the target and source en-
vironments. And then we transfer the model of the pair in
the source environment to the pair in the target environment.
We consider that obtaining information about the layout of
walls is much easier for an end user than obtaining informa-
tion about the material of the walls, and collecting unlabeled
sensor data is also much easier than collecting labeled data.
When end users collect labeled sensor data, they have to man-
ually record their precise coordinates in their environments
(e.g., by using video recordings). On the other hand, in our
approach, we ask the end user to walk at random around the
environment to obtain the unlabeled sensor data.

To the best of our knowledge, this is the first study that at-
tempts to design a model transfer method for device-free pas-
sive indoor positioning. The research contributions of this
paper are that (1) we propose a model transfer method for
device-free passive indoor positioning that requires the end
user to have only a floor plan of a target environment and un-
labeled sensor data obtained in the target environment, and
(2) we confirm the effectiveness of our method in real envi-
ronments.

RELATED WORK

Standard Wi-Fi based indoor positioning
Indoor positioning methods rely on signaling technologies
such as infrared (IR) [26], ultrasound [18], radio-frequency
identification (RFID) [31], ultra-wideband (UWB) [23], FM
radio wave [12, 17], Bluetooth [25], and Wi-Fi [13]. In par-
ticular, because Wi-Fi technology is widespread, many re-
searchers have attempted to construct indoor positioning sys-
tems by utilizing Wi-Fi access points (APs). An advantage
of Wi-Fi based positioning is that we can use a smart phone
with a Wi-Fi module as a signal receiver. For standard Wi-Fi
based positioning, fingerprinting techniques have also usu-
ally been employed to measure indoor positions [13]. Fin-
gerprinting employs a training phase in which Wi-Fi signals
(i.e., the unique MAC addresses of APs and the received sig-
nal strengths from APs) are observed at known coordinates.
A set of APs and their signal strengths constitute a fingerprint
that is unique to those coordinates.

Constructing indoor positioning models with little effort
Here we introduce studies of standard Wi-Fi positioning that
try to reduce the amount of work related to collecting Wi-Fi
fingerprints. In [9], the authors attempted to learn a finger-
print for each room automatically by clustering Wi-Fi scan
data observed in a user’s daily life with the help of acceler-
ation sensors. Several studies constructed radio maps with
no supervision by using simultaneous localization and map-
ping (SLAM) techniques [7, 20]. In [8], the authors perform
SLAM based on the fact that certain daily activities are un-
dertaken at particular places (e.g., sleeping in a bedroom). In
[19, 10], the authors also tried to construct radio maps au-
tomatically with the pedestrian dead reckoning (PDR) tech-
nique. In [24], the authors attempted to track a user with no
Wi-Fi fingerprint. The authors corrected the accumulated er-
ror of acceleration-based PDR by employing landmarks with
known coordinates. With this approach, some sensors may
observe specific sensor data values at a given landmark. For
example, an acceleration sensor inside an elevator may ob-
serve characteristic signals. On the other hand, we try to re-
duce the work involved in collecting Wi-Fi fingerprints by
constructing an indoor positioning model based on training
data obtained in other environments.

Adaptive indoor positioning
We introduce Wi-Fi positioning studies that attempt to cope
with the instability of Wi-Fi based positioning methods
caused by changing environmental dynamics. In [2], the au-
thors investigated the effect of environmental factors (peo-
ple, doors, and humidity) on indoor positioning with Wi-Fi,
and developed a sensor-network-assisted adaptive indoor po-
sitioning method by sensing the environmental factors. In
[29], to cope with the temporal dynamics of signal strengths,
the authors installed small numbers of Wi-Fi sensor nodes
in an environment, and employed a regression analysis to
learn/estimate the temporal predictive relationship between
the signal strength values received by the sensor nodes and
that received at a test point. On the other hand, recent device-
free passive indoor positioning studies (including our study)
have used the variance values of signal strengths instead of
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raw signal strength values (or mean values) to cope with the
environmental dynamics [16, 30]. For more detail about the
usefulness of variance values, refer to [16] and [30].

Device-free passive indoor positioning
Because standard Wi-Fi based indoor positioning assumes
that a user always possesses a signal receiver, it is difficult
to use this approach for such applications as the surveil-
lance of an independently living elderly person. Therefore,
device-free passive indoor positioning technologies have re-
cently been attracting attention. In [30], the authors collect
signal strengths with receivers when a person is at each train-
ing point in a training phase. In a test phase, when a signal
strength vector s is given, they estimate the position of a per-
son x that maximizes P (x|s) by using the Bayes’ theorem
P (x|s) = P (s|x)P (x)

P (s) . In addition, they test several methods
for modeling the conditional probability P (s|x) such as the
Gaussian distribution, a histogram, and the Gaussian kernel
[11]. Furthermore, they pre-process received signal data by
using the moving average and the moving variance [30]. In
[22], the authors evaluated the above methods in real environ-
ments and investigated the effects of various parameters such
as the number of nodes and window size. In [28], the authors
employed a discriminative classifier, e.g., linear discriminant
analysis, non-linear discriminant analysis, and instance based
classification, to estimate which training point a user is at.

Based on the above device-free passive indoor positioning
studies, this paper proposes a model transfer method for re-
ducing the effort involved in training an indoor positioning
model.

Modeling signal propagation
Many researchers have investigated the features of radio wave
propagation by employing, for example, path loss and multi-
path delay analysis in indoor/outdoor environments [3, 21, 6].
If we can simulate the received signal strength from a trans-
mitter at any point based on these studies, we can construct an
indoor positioning model for an end user environment with-
out the need for labeled training data. However, it is very dif-
ficult to calculate signal attenuation in indoor environments
because it is affected by various factors such as wall mate-
rial, fixtures, and furnishings. Also, it is difficult for the end
user to prepare such information about the factors in his/her
environment. In this study, we employ unlabeled sensor data
obtained in a target environment without using such informa-
tion.

PROPOSED METHOD

Assumed environment
In this paper, we assume that multiple nodes that can receive
Wi-Fi signals are installed in an indoor environment as shown
in Fig. 1. Also, we install a hub (Wi-Fi AP) that trans-
mits Wi-Fi signals and aggregates signal strength information
measured by the nodes. Each node measures the strengths
of signals transmitted from the AP and sends the informa-
tion to the AP. Then, the AP or a computer connected to the
AP estimates a person’s position by using the aggregated sig-
nal strength information. That is, we can obtain information

Wi-Fi sensor nodeAccess point

t

RSSI from AP

t

RSSI from AP

Figure 1. Example setup of sensor nodes and access point.
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Figure 2. Overview of our method for training positioning model of tar-
get environment.

about the signal strength between each node and the AP as
shown in Fig. 1 (dotted line segments). For each node and
AP pair, we can obtain the signal strength received by the
node.

Moreover, because we employ device-free passive indoor po-
sitioning, we assume that there is one person in an indoor en-
vironment. In this study, we use Raspberry Pi micro comput-
ers with two Wi-Fi modules as sensor nodes. We use tcpdump
(monitor mode) to measure signal strength information. Our
sensor node measures signal strength values at about 1.5 kHz.

Overview
Fig. 2 shows an overview of our method for training the po-
sitioning model of a target environment. For each transmitter
and receiver pair in a source environment (or environments),
we first learn the relationship between the variance value of
signal strengths and a position (point) on a line segment con-
necting the transmitter and the receiver that a person passes.
We call the model a signal strength variance model or a vari-
ance model. With a variance model, we can compute a vari-
ance value v that will be measured when a person passes a
segment x meters from a segment edge. We then associate
a pair in the source environment with a pair in the target en-
vironment whose signal strength characteristics seem to be
similar. After that, we transfer the variance model of the pair
in the source environment to that of the pair in the target en-
vironment. Finally, we learn a model for detecting a person
who passes between a node and an AP, and also learn mod-
els for estimating the coordinates of the user. By using the
outputs of the models, we track a person in the target envi-
ronment based on a particle filter, which is a state-of-the-art
robust tracking method.
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Figure 3. Example sensor data: there is no obstacle between AP and
node. The distance between AP and node is three meters.

Here we summarize the information required for constructing
an indoor positioning model for the target environment; floor
plans of the source and target environments (positions of APs
and nodes, and layout of walls), labeled sensor data obtained
in the source environments, unlabeled sensor data obtained in
the target environment, and sensor data obtained when there
is no person in the source and target environments. The floor
plans, unlabeled sensor data, and sensor data obtained when
no one is present are used to associate a pair in the source en-
vironment with a pair in the target environment. In this work,
training data obtained in the source environment are time se-
ries of signal strength variances measured by each receiver
and the trajectory information about a person. From the tra-
jectory, we can know the person’s coordinates in the source
environment at any time slice.

In this work, for each time slice t, we judge whether or not
the person passes between an AP and a node by using sensor
data obtained at time t. When the person is judged to have
passed between any of the pairs, we estimate the person’s co-
ordinates in detail by using sensor data obtained at time t.
Otherwise, we estimate the coordinates of the person based
on a predefined motion model.

Learning variance model in source environment
Example data
We first show example sensor data. As shown in Fig. 3, we
installed an AP and a sensor node and collected the strength
values of signals from the AP by using the node when a per-
son passed between the AP and the node. Fig. 3 shows a time
series of signal strength variance values observed by the node
when the person walked along each path1. As shown in the
figure, the variance values become larger as the path becomes
closer to the transmitter or the receiver. This is because, when
the human body is close to the transmitter or the receiver, it
greatly impedes the signal to the receiver or from the trans-
mitter. As shown in Fig. 3, the variance value depends on the
position (point) on a line segment connecting the transmit-
ter and the receiver that the person passes. With the variance
value, we estimate the person’s position on the line segment
connecting the AP and the node and track the person using
a particle filter. Note that, although many existing studies
employ the mean value of signal strengths as vector element
values, we employ the variance of signal strengths.

1The variance value shows the moving variance computed for each
sliding window with a 90% overlap whose window size is one sec-
ond.
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Figure 4. Example sensor data: there is no obstacle between AP and
node. The distance between AP and node is two meters.
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Figure 5. Example sensor data: there is a wall (gypsum board) between
AP and node. The distance between AP and node is three meters.

We also installed an AP and a node so that the distance be-
tween them was two meters as shown in Fig. 4 and collected
sensor data. As shown in the figure, we observed sensor data
that are different from those shown in Fig. 3. The variance
values in Fig. 4 are somewhat larger than those in Fig. 3.
Therefore, when we transfer a model, we should select a pair
in the source environment whose distance is similar to that of
a pair in the target environment.

Fig. 5 shows variance data time series obtained when there
is a wall (gypsum board) between an AP and a node. As
shown in the figure, the variance values become larger as the
walking path approaches the wall or the receiver. This may be
caused by the signal attenuation and diffraction of the wall.
On the other hand, Fig. 5 also shows a variance data time
series obtained when a person walked between the wall and
the AP. As shown in the figure, the variance values are small.
As above, because the feature of the variance data depends
greatly on the area (sub-line segment) divided by walls, we
should construct a variance model for each sub-line segment.
(For example, the line segment connecting a transmitter and
a receiver in Fig. 5 consists of two sub-line segments.)

Fig. 6 shows sensor data obtained when there are two walls
between an AP and a node. Also, as shown in Fig. 5, when
a person passes a sub-line segment whose end points are a
transmitter and a wall, the variance values do not increase
greatly. On the other hand, as shown in Fig. 5, when a person
passes a sub-line segment whose end points are a wall and a
receiver, the variance values increase greatly. That is, the fea-
ture of the variance model depends greatly on its correspond-
ing end points. Therefore, when we perform model transfer,
we should associate a sub-line segment in a target environ-
ment with that in a source environment whose end points are
same as those of the sub-line segment in the target environ-
ment.
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Figure 6. Example sensor data: there are two walls (gypsum board) be-
tween AP and node. The distance between AP and node is three meters.
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Figure 7. Example sensor data: there is a wall (concrete) between AP
and node. The distance between AP and node is three meters.

Fig. 7 shows variance data time series obtained when there
is a wall (concrete) between an AP and a node. Fig. 8 also
shows variance data time series obtained when there is a wall
(gypsum board) between an AP and a node. As shown in the
figures, the observed variance values depend on materials be-
tween an AP and a node. However, it is impractical for an end
user to prepare information about the materials. Even if the
end user can obtain the information, the relationship between
a material and variance values observed when a person passes
between a receiver and a transmitter has not yet been formu-
lated. Therefore, in our model transfer method, we employ
unlabeled sensor data obtained when a person actually passes
between a receiver and a transmitter instead of the material
information.

Learning variance model
We model the relationship between the variance value and the
position (point) on a line segment connecting a transmitter
and a receiver in a source environment through which a per-
son passes. In the following procedure, we transfer the model
to a pair in a target environment. Note that, as mentioned
above, we construct a variance model for each sub-line seg-
ment divided by walls when there are walls between a trans-
mitter and a receiver. Because the variance values become
larger as the person becomes closer to the transmitter or the
receiver (or wall), we use a mixture of two Gaussian functions
to model the relationship between the variance value and the
position as shown in Fig. 9 by using the following formula.

v(x) =

{
0 x < 0, x > l,

a1 exp
(− x2

2b21

)
+ a2 exp

(− (x−l)2

2b22

)
otherwise,

where x shows that the person passes x meters from one end
of a sub-line segment and v(x) shows the variance value ob-
tained at that time. Also, l is the length of the sub-line seg-
ment. We estimate the parameters of Gaussian functions a1,
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Figure 8. Example sensor data: there is a wall (gypsum board) between
AP and node. The distance between AP and node is three meters.
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Figure 9. Example mixture of two
Gaussian functions. The length of
the sub-line segment is 3 meters.
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Figure 10. Example mixture of two
functions based on Gumbel distri-
bution. The length of the sub-line
segment is 3 meters.

b1, a2, and b2 based on the Levenberg-Marquardt algorithm
[14] by using x values and corresponding variance values in-
cluded in labeled training data. Assume that a person passes
x meters from one end of a line segment at time t. In this
method, the maximum variance value in a tw-second time
window whose center is t becomes a variance value corre-
sponding to x.

In this paper, we also test a mixture of our designed functions
based on a Gumbel distribution, which has a model parameter
of skewness, instead of Gaussian functions as shown in Fig.
10. We compare them in the evaluation section.

v(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 x < 0, x > l,

a1 exp
(− x

b1

)
exp

[
− exp

(− x
b1

)]
+

a2 exp
(−x−l

b2

)
exp

[
− exp

(−x−l
b2

)] otherwise.

In addition to the above parametric model based approaches,
we also evaluate a non-parametric based approach. In the
approach, we compute a variance value in the target environ-
ment by directly using training data obtained in the source
environment. We explain it later.

Learning positioning model in target environment
Fig. 11 shows an overview of the process for learning posi-
tioning models in a target environment. We first find sub-line
segments from source environments whose variance features
are similar to the features of a sub-line segment from the tar-
get environment. We then transfer the variance models for
those sub-line segments from the source environments to a
variance model for the target environment. Next, we learn a
model for detecting whether or not a person passes the sub-
line segment in the target environment. Finally, we construct
a positioning model for each sub-line segment in the target
environment. These positioning models estimate the coordi-
nates on the sub-line segment at which a user is located.
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Figure 11. Overview of the process for learning positioning models in
target environments.

Associating sub-line segment pairs
We first find a sub-line segment of a receiver and transmitter
(or wall) pair in a source environment whose variance feature
might be similar to that of each pair in the target environment.
We call a sub-line segment in a source environment and that
in a target environment a source sub-line segment and a target
sub-line segment, respectively. We then transfer the variance
model of the source sub-line segment to the target sub-line
segment. We narrow down the appropriate source sub-line
segments for each target sub-line segment as follows.
(1) We first select source sub-line segments whose end points
are the same as those of the target sub-line segment. For ex-
ample, if the end points of the target sub-line segment are a
receiver and a wall, we select source sub-line segments whose
end points are also a receiver and a wall.
(2) From the above selected source sub-line segments, we
then select those that have the same numbers of walls between
APs and nodes corresponding to the sub-line segments as the
target sub-line segment. The information is obtained from the
floor plans (layout of walls and positions of AP and nodes).
(3) From the selected source sub-line segments, we find top-
k sub-line segments whose variance features might be similar
to those of the target sub-line segment according to the fol-
lowing three criteria.

• Length of sub-line segment: Sub-line segments with sim-
ilar lengths may have similar signal features. We use
the absolute difference between the two lengths, i.e., the
lengths of the target and source sub-line segments.

• Signal strength: Sub-line segments with similar signal
strengths observed by their receivers when there is no per-
son on the segments may also have similar signal features
because materials present between the receiver and the
transmitter might be similar to each other. We compare the
signal strength distribution of the target sub-line segment
with that of the source sub-line segment by using the KL
divergence. The KL divergence is a commonly used mea-
sure of the difference between two probability distributions
P and Q. The KL divergence of Q from P is defined as

DKL(P‖Q) =

∫ ∞

−∞
p(x) log

p(x)

q(x)
dx.

Since we employ Gaussian distributions, p(x) =
N (µ1, σ1) and q(x) = N (µ2, σ2), where µ and σ corre-
spond to the mean and the variance of the signal strengths,
respectively.

• Variance value: We consider that, if distributions of vari-
ance values obtained when a person randomly walks across
sub-line segments many times are similar to each other, the
segments will also have similar variance models. In other
words, similar variance models may output similar vari-
ance value distributions when a person walks across their
corresponding segments many times. Therefore, we com-
pare the distributions of variance values obtained when a
person has passed through many times.
As mentioned in the introduction section, we assume that
unlabeled sensor data are obtained in the target environ-
ment. We employ outlier detection techniques to detect
when the user passed through the target sub-line segment
by using a variance time series computed from the unla-
beled sensor data. By doing so, we can obtain outlying
variance values, which correspond to variance values ob-
served when the user passed the segment. We compare
the distribution of the outlying variance values of the target
sub-line segment with that of the outlying variance values
of the source sub-line segment by using the above men-
tioned KL divergence. To detect outliers, we first model the
log of the variance values of unlabeled sensor data with a
Gaussian distribution. Then, when the log variance value in
a one-second time window deviates by five-times the stan-
dard deviation, we regard the maximum variance value in
the window as an outlier variance value.
If we have sufficient unlabeled data, we consider that we
can find appropriate source sub-line segments. We inves-
tigate the required amount of unlabeled data in the evalua-
tion section.

After computing the above three distance values (criteria), we
standardize them and then compute the average distance. Af-
ter that, we perform a k-nearest neighbor search based on the
average distance to find the top-k source sub-line segments.
We investigate the above three criteria in the evaluation sec-
tion.

Transferring variance model
As above, we can obtain k source sub-line segments (and their
variance models) for each target sub-line segment. By using
the parameters of the k models, we compute the parameters
of the model of the target sub-line segment. We compute each
target model parameter by using the weighted average of cor-
responding parameters of the k models. For example, we use
the following formula to compute a1 for the target environ-
ment:

a′1 = Dk

k∑
i=1

1

di
a1,i,

where a1,i is a1 for the ith model of the selected source sub-
line segment, di is the Euclidean distance for the ith model
used in the above kNN search, and Dk =

∑k
i=1

1
di

. Note
that we use the length of the target sub-line segment as l in
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the transferred model. (See equations in Learning variance
model section.)

Here we explain how we transfer models when we use the
non-parametric based method. We construct a variance model
for a target sub-line segment because we use variance values
computed from the model in the following procedures (e.g.,
learning positioning model). In the non-parametric based
method, we compute a variance value directly from train-
ing data obtained at the selected k source segments. When
we want to obtain a variance value at x for the target seg-
ment, we first compute a variance value at x for each selected
source segment based on interpolation. That is, for each se-
lected source segment, we find two variance values that are
obtained at points close to x; one is larger than x and the
other is smaller than x. We call the larger and smaller values
xl and xs, respectively. We then estimate a variance value at
x for the ith source segment based on linear interpolation as
follows.

v(x)′i = (1− x− xs

xl − xs
)v(xs)i +

x− xs

xl − xs
v(xl)i,

where v(x)i is the variance value of the ith source segment at
x. Note that, when we cannot use interpolation, we use linear
extrapolation. Finally, by using the computed variance value
at x for each selected segment, we compute the weighted av-
erage of the variance value at x where weight corresponds to
the inverse of the distance used in the above kNN search.

By using the above methods, we can compute the variance
value at any point on the target sub-line segment.

Learning passing detection model
Before constructing a positioning model by using the trans-
ferred variance model, we learn a model for detecting whether
or not a person passes between a pair consisting of an AP and
a node in the target environment, which is used in a particle
filter. In this study, we call the model a passing detection
model. This model is prepared for each node and AP pair.
In this study, we detect a person passing through based on a
two-class SVM (passing and non-passing classes). The train-
ing data of the SVM are the variance values observed when
a person passed or did not pass. Note that, to train the SVM,
we use labeled variance data of source sub-line segments that
are associated with sub-line segments included in the target
pair of interest as training data. (Remember that a line seg-
ment connecting an AP and a node consists of several sub-line
segments. Also, in the section entitled Associating sub-line
segment pairs, we used outlier detection techniques to detect
people passing through from unlabeled sensor data. Here we
use the supervised discriminative classification approach, i.e.,
SVM, because we can use labeled training data.)

Here, when a sub-line segment consists of a wall and a trans-
mitter as shown in Fig. 5, variance values obtained when a
person passes through become small and so the performance
of the passing detection model will decrease. Therefore, in
this work, when we construct a passing detection model, we
ignore sub-line segments that may have poor detection per-
formance. We estimate the performance of each sub-line seg-
ment very simply. We construct a binary classifier (SVM

for passing and non-passing classes) for each sub-line seg-
ment and compute its classification performance (average F-
measure) by using its training data. We regard a sub-line seg-
ment whose classification performance is lower than a thresh-
old (thpass) as a segment with poor detection performance.
Because we ignore sub-line segments with poor detection per-
formance, we detect only passage across sub-line segments
with high detection performance. The passing detection is
performed for each sliding window by using the maximum
variance value in the window.

Constructing positioning model
By using the transferred variance models, we can compute
a variance value at any point between an AP and a node in
the target environment. On the other hand, when a person
passes a point x between the AP and the node, we can obtain
v(AP,A) from signals received by the node, where A and
AP are the identifiers of the node and the AP, respectively. In
this study, we compare the value with the transferred variance
models to estimate x.

When a passing detection model consisting an AP and node
pair detects a person passing at a time window, we obtain
v(AP,A) from the node, which is the maximum variance
value in the time window. Then we find a point that maxi-
mizes the likelihood estimator and the point becomes the es-
timated position:

x̂ = argmax p(xi|v(AP,A)).
Here, p(xi|v(AP,A) is the output of the transferred variance
model. Note that, because the variance model is bimodal as
shown in Figs. 9 and 10, the positioning model outputs top-2
estimated positions and they are used in the following particle
filter.

Tracking with particle filters
Overview
Using the above passing detection models and positioning
models as a basis, we track a person in the target environ-
ment by using a particle filter [5, 27] that is usually used to
estimate the states of non-linear systems. Its algorithm works
in a three-step process: sampling, weight calculation, and re-
sampling. In the sampling process, new particles are gen-
erated from particles at the previous time slice (t − 1) and
are moved based on a motion model. The generated particles
show prior estimations of coordinates at time t. In the weight
calculation process, the particle weights are computed based
on an importance function with a measurement at time t. In
this study, a measurement corresponds to the estimated coor-
dinates of positioning models. Particles that are close to the
measurement and match the importance function have heavy
weights. In the resampling process, particles are re-sampled
according to their weights.

The above three procedures are iterated for each tw-second
sliding window with no overlap.

Sampling
In the sampling process, we estimate the coordinates of the
ith particle at time t based on a motion model. The probabil-
ity with which the ith particle at time t − 1 will move to the
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coordinates xt at time t is computed according to the follow-
ing bivariate Gaussian distribution.

p(xt|pt−1
i ) = N (xt|pt−1

i + ve(p
t−1
i )∆t,Σt−1

i ),

where pt−1
i indicates the coordinates of the ith particle at time

t − 1, ve(pt−1
i ) is the speed of the ith particle at time t − 1,

and Σt−1
i is the covariance matrix of the bivariate Gaussian

distribution. The mean of the distribution corresponds to ex-
trapolated coordinates at time t simply computed from a par-
ticle’s speed and coordinates at time t− 1. Also, its standard
deviation corresponds to the distance between the mean of the
distribution and the particle’s coordinates at time t−1, and its
covariances are zero. By using this standard deviation value,
we can also take into account the situation where the person
stops walking, i.e., the position of a particle does not change.
According to the distribution, we sample p new particles for
each particle at time t− 1.

Weight calculation
We then compute the particle weights by using measurements
obtained at time t. When a passing detection model detects a
person passing, its associated positioning model outputs mea-
surements, i.e., estimated coordinates. Therefore, this pro-
cess is executed only when passing detection models detect
a person passing. The weight of the ith particle is computed
according to the probability density function of a mixture of
bivariate Gaussian distributions whose mean values are mea-
surements obtained by using wi =

∑
n N (pti|mt

n), where pti
is the coordinate of the ith particle at time t and mt

n is the nth
measurement at time t. Note that, when two or more passing
detection models detect a person passing, multiple measure-
ments will be output.

Resampling
From the weighted samples, we resample r particles accord-
ing to their weights. Here, the probability with which a par-
ticle is resampled is proportional to its weight. The posterior
estimated coordinates of a person at time t are the weighted
average coordinates of the r particles.

EVALUATION

Data set
We collected sensor data in our graduate school buildings.
Note that, in order to collect data for home-like environments,
we selected rooms that are used as lounges and bedrooms
with many domestic appliances and furnishings (e.g., tele-
visions, beds, tables, washstands, bookshelves, etc.). The
materials forming the walls include metal, concrete, gypsum
board, and wood. Fig. 12 shows our four experimental en-
vironments and their settings. We installed ten nodes in each
environment to ensure that each environment had the same
amount of training data for constructing positioning models,
which facilitated our cross-validation evaluation. Also, we
designed the node layouts so that the nodes were evenly dis-
tributed in each environment. Environments 1 and 2 have
similar layouts, since they are both used as laboratory offices.
Similarly, environments 3 and 4 have similar layouts, since
they are both used as classrooms. To obtain labeled training
data, we asked a participant to walk at random around for

Environment 2 Environment 3 Environment 4

Wi-Fi sensor nodeAccess point

Environment 1

Figure 12. Floor plans of our experimental environments. The sizes of
our environments 1, 2, 3, and 4 are 11.7m × 16.3m, 8.4m × 12.9m, 10.5m
× 12.0m, and 10.4m × 7.9m, respectively.

Table 1. Experimental parameters used in this study.
params value description

k 2 kNN search for pair association.
thpass 0.7 Threshold for passing detection model.
tw 1 sec Width of time window.
p 10 p particles generated from a particle.
r 1000 r particles re-sampled.

about twenty minutes in each environment and we recorded
the walking with a video camera to label the data. To ob-
tain unlabeled data, the participant walked at random around
for about ten minutes in each environment. We also obtained
labeled test data (walked randomly ten times for about ten
minutes) in each environment. Table 1 summarizes the ex-
perimental parameters used in this study.

Evaluation methodology
To investigate the effectiveness of our proposed method, we
test the following methods.

- Supervised: The passing detection models and positioning
models are trained on labeled training data obtained in the
same environment.
- Random (Gaussian): When we associate sub-line seg-
ments in source environments with each sub-line segment in
a target environment, we randomly select k segments. Note
that we use the Gaussian function to construct the variance
model.
- Random (Gumbel): When we associate sub-line segments,
we randomly select k segments. We use the Gumbel distribu-
tion based function to construct the variance model.
- Random (none): When we associate sub-line segments,
we randomly select k segments. We employ non-parametric
approaches to construct the variance model
- Proposed (Gaussian): This is our proposed method. Note
that we use the Gaussian function to construct the variance
model.
- Proposed (Gumbel): This is our proposed method. We
use the Gumbel distribution based function to construct the
variance model.
- Proposed (none): This is our proposed method. We
employ non-parametric approaches to construct the variance
model.

When evaluating test data obtained in an environment (tar-
get environment), we regard the other three environments as
source environments, constructing source variance models for
each sub-line segment in those three environments. Note
that since variance models are based on sub-line segments,
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Table 2. MAEs (meters) for proposed methods.

env.1 env.2 env.3 env.4 avg.
Supervised 1.78 1.40 1.74 1.61 1.63

Random (Gaussian) 2.03 1.78 2.20 2.36 2.09
Random (Gumbel) 2.41 2.06 2.69 2.60 2.44
Random (none) 2.13 1.86 2.49 2.39 2.21

Proposed (Gaussian) 2.06 1.50 1.87 1.90 1.84
Proposed (Gumbel) 2.81 1.76 2.17 2.20 2.23
Proposed (none) 2.29 1.64 1.96 2.18 2.02

we construct more than ten variance models per source envi-
ronment. We then transfer these source variance models to
the target environment. We evaluate the performance of each
method using the mean absolute error (MAE).

Results
Positioning error
Table 2 shows the MAEs of the methods used for
each environment. As shown in the table, Supervised,
which employs labeled sensor data collected in a tar-
get environment, achieved the best positioning accuracy.
Proposed (Gaussian) achieved an average positioning
error of 1.84 and the difference between the error of
Supervised and that of Proposed (Gaussian) was only
about 0.2 meters. Proposed (Gumbel) could not outper-
form Proposed (Gaussian). We consider that the Gaus-
sian function is better for variance modeling than the Gum-
bel distribution based function. As for Proposed (none),
we consider that because it employs linear interpolation and
extrapolation to compute the variance value, the method
could not output precise variance values compared with
Proposed (Gaussian). Furthermore, the positioning perfor-
mance of the random based methods was poorer than with our
methods. Therefore, we confirmed the effectiveness of the
three criteria used in the kNN search. In the following evalu-
ations, we focus on Proposed (Gaussian), which achieved
the best performance.

Criteria for selecting source sub-line segments
Here we investigate the three criteria used for selecting source
sub-line segments with kNN search; length of sub-line seg-
ment (L), signal strength (S), and variance value (V ). In
Table 3, we compare the effects of the three criteria. For
example, Gaussian w/ LS is a method that uses Gaus-
sian functions for variance models and employs L (length
of sub-line segment) and S (signal strength) for finding top-
k source sub-line segments. Also, Gaussian w/ V shows
a method that employs only V (variance value) for finding
top-k source sub-line segments. Furthermore, Gaussian all
is a method that employs all three criteria to find top-k
source sub-line segments. That is, the method is identical
to Proposed (Gaussian) in Table 2.

As shown by the results, we achieved the best perfor-
mance when we did not use signal strength information
(Gaussian w/ LV ). The difference between the error of
Supervised and that of Gaussian w/ LV was about 0.15
meters. We consider that the signal strength (S) depends not
only on obstacles that are present between a transmitter and
a receiver but also on the structure around the line segment.

Table 3. MAEs (meters) for proposed methods. We compare the effects
of three criteria used in pair association.

env.1 env.2 env.3 env.4 avg.
Gaussian all 2.06 1.50 1.87 1.90 1.84

Gaussian w/ LS 2.06 1.66 2.10 2.05 1.97
Gaussian w/ LV 2.00 1.55 1.75 1.84 1.78
Gaussian w/ SV 2.24 1.46 1.88 2.02 1.90
Gaussian w/ L 1.87 1.69 2.05 2.11 1.93
Gaussian w/ S 2.34 1.74 2.28 1.96 2.08
Gaussian w/ V 2.35 1.56 1.94 2.00 1.96

For example, we confirmed that signal strength was greatly
affected by a metal door that was near rather than on a line
segment. Also, as shown in the results, L seems to contribute
to the positioning performance more than V . However, the
difference was not very large. As shown above, we confirmed
the effectiveness of the length of sub-line segment (L) and the
variance value (V ).

Effect of number of selected source sub-line segments
In the above results, we use k = 2 in the kNN search to
find source sub-line segments suitable for use as target sub-
line segments. The variance models of the k sub-line seg-
ments are used to construct a variance model of the target
sub-line segment. Fig. 13 shows the transition of MAEs for
Proposed (Gaussian) when we change k. We have consid-
ered that using small k values provides good positioning per-
formance because we only use good variance models. How-
ever, when we use smaller k values, the positioning perfor-
mance worsens. This may be caused by errors in the esti-
mated parameters of selected source variance models. When
we use small k values, the effect of the errors on computing
the model parameters of the target model will be large. In our
results, when k = 6, Proposed (Gaussian) achieved the
best performance. Surprisingly, the error distance was 1.71
meters, and the difference between the errors of Supervised
and Proposed (Gaussian) was only about 0.08 meters. We
found no significant difference between the two results with
a two-tail t-test (p > 0.05).

Amount of unlabeled sensor data
When we transfer variance models, we employ 10-minute un-
labeled data obtained in a target environment. Here we in-
vestigate the amount of unlabeled data. Fig. 14 shows the
transition of MAEs when we change the amount of unlabeled
data. Note that the x-axis shows the ratio of unlabeled data
used for finding source sub-line segments. (1.0 shows 10-
minute data.) As shown in the figure, a smaller amount of
unlabeled data result in poor positioning performance. How-
ever, even when x = 0.6, our method maintains a moderate
level of positioning performance. Therefore, we consider that
we can reduce the work involved in collecting unlabeled data
to about 60%, i.e., about six minutes of data.

Amount of labeled sensor data
We use labeled training data obtained in source environments
to construct variance models and passing detection mod-
els. When we used only 80% of the labeled training data
(16-minute data for each source environment), the MAE of
Proposed (Gaussian) increased from 1.84 meters to 2.04
meters. This may be because we cannot compute precise pa-
rameters for the variance models with this small amount of

893

SESSION: INDOOR LOCALIZATION



 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

 1.9

 1.95

 2

 2  3  4  5  6  7  8  9  10

E
rr

or
 d

is
ta

nc
e 

[m
et

er
]

k

Proposed (Gaussian)
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Figure 15. MAEs for Proposed (Gaussian)
when we changed the number of source environ-
ments.

labeled data. Also, we changed the number of source envi-
ronments, and investigated the effect. When we test environ-
ment 1 and the number of source environments is one, for
example, we assume environment 2, 3, or 4 as a source en-
vironment and compute the average MAE over the three sit-
uations. Fig. 15 shows the MAEs when we change the num-
ber of source environments. As shown in the result, while
the result obtained using only one source environment was
somewhat poor, our method achieved good positioning per-
formance when we used only two source environments. This
may be because we collected sufficient amounts of labeled
data for each source environment.

Discussion
Impact of similarities between environment designs
Here we investigate the impact of the design similarity be-
tween a source environment and a target environment. Table
4 shows the positioning errors obtained when a single envi-
ronment is regarded as a source environment (row) for each
target environment (column). For example, the positioning
error of 2.51 meters in row 1, column 2 corresponds to the
error when using environment 1 as the source environment
and environment 2 as the target environment. As mentioned
above, environments 1 and 2 are similar to each other in de-
sign. Likewise, environments 3 and 4 are also similar in de-
sign. The average error when using a similar environment as
the source environment is 2.05 meters, compared to an aver-
age error of 2.19 meters when using a dissimilar source en-
vironment. While it appears that design similarities do affect
the positioning performance, we believe that the impact from
varying the number of source environments is more signifi-
cant (see Fig. 15).

Number of Wi-Fi sensor nodes
For our experiment, we installed ten Wi-Fi nodes in each en-
vironment. Here we investigate the number of Wi-Fi nodes.
Fig. 16 shows the transition of MAEs when we randomly re-
moved the Wi-Fi nodes used in our method. As shown in the
figure, the number of nodes strongly relates to the positioning
performance, and this also relates to the cost of deploying the
system. The placement of the nodes also affects the position-
ing performance. An investigation of placement can be found
in [30].

Person’s physique
Device-free passive positioning relies on the fact that the
human body interferes with a wireless signal transmission.

Table 4. The positioning errors (in me-
ters) when using a single environment as
the source environment (row) for each tar-
get environment (column).

env.1 env.2 env.3 env.4

env.1 n/a 2.51 2.60 1.82
env.2 1.55 n/a 1.71 2.05
env.3 2.79 1.75 n/a 2.17
env.4 3.23 1.60 1.95 n/a
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Figure 16. Transi-
tions of MAEs for
Proposed (Gaussian)
and Supervised when we
changed the number of
Wi-Fi sensor nodes in the
environment.

Therefore, when the physique of a person in a source envi-
ronment is different from that in a target environment, the
difference can effect the positioning. In [16], a positioning
model for one person was used to locate another person, with
a performance degradation of only about 5%. A more thor-
ough investigation of the effects of differing physiques is an
important component of our planned future work.

Detecting other activities
Our method detects a person passing between a transmitter
and a receiver by detecting an increase in the variance value.
However, take the situation where a user sits down between
a transmitter and a receiver and eats a meal. In this situa-
tion, we assume that the variance values will also increase
and that our method may mistakenly recognize this activ-
ity as the user passing between the transmitter and the re-
ceiver. To cope with this problem, we should distinguish be-
tween walking and other activities, e.g., eating, by analyz-
ing the time-series variance data using device-free activity-
recognition techniques. We plan to investigate such tech-
niques as a part of our future work.

CONCLUSION
This paper proposed a new method that enables us to con-
struct a positioning model for device-free passive indoor lo-
calization with little effort. As a part of our future work, we
plan to automatically obtain unlabeled data in an end user’s
daily life to reduce burdens imposed on the user.
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