
Turning a Mobile Device into a Mouse in the Air

Sangki Yun, Yi-Chao Chen, Lili Qiu
The University of Texas at Austin

{sangki,yichao,lili}@cs.utexas.edu

ABSTRACT
A mouse has been one of the most successful user interfaces due
to its intuitive use. As more devices are equipped with displays
and offer rich options for users to choose from, a traditional mouse
that requires a surface to operate is no longer sufficient. While dif-
ferent types of air mice are available in the market, they rely on
accelerometers and gyroscopes, which significantly limit the accu-
racy and ease of use.

In this paper, we develop a system that can accurately track hand
movement to realize a mouse. A unique advantage of our scheme
is that it achieves high tracking accuracy using the existing hard-
ware already available in the mobile devices (e.g., smart phones and
smart watches) and equipment to be controlled (e.g., smart TVs).
More specifically, our approach sends inaudible sound pulses at a
few selected frequencies, and uses the frequency shifts to estimate
the speed and distance traveled. We then develop techniques to
quickly calibrate the distance between speakers and narrow down
the device’s initial position using its movement trajectory. Based on
the information, we continuously track the device’s new position in
real time. This is feasible because many devices, such as smart
TVs, PCs, and laptops, already have multiple speakers. When only
one speaker is available, we can leverage the frequency shift of
sound along with the phase of received WiFi signal to enable track-
ing. Our evaluation and user study demonstrate that our system
achieves high tracking accuracy (e.g., median error of around 1.4
cm) and ease of use.

Categories and Subject Descriptors
C.2.m [Computer-Communication Networks]: Miscellaneous

General Terms
Algorithms, Measurement, Performance

Keywords
Doppler Effect; Tracking; Accelerometer; Gyroscope

1. INTRODUCTION
Motivation: A mouse has been one of the most successful tech-
nologies for controlling the graphic user interface due to its ease

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiSys’15, May 18–22, 2015, Florence, Italy.
Copyright c⃝ 2015 ACM 978-1-4503-3494-5/15/05 ...$15.00.
http://dx.doi.org/10.1145/2742647.2742662.

of use. Its attraction will soon penetrate well beyond just comput-
ers. There already have been mice designed for game consoles and
smart TVs. A smart TV allows a user to run popular computer
programs and smartphone applications. For example, a smart TV
user may want to use a Web browser and click on a certain URL
or some part of a map using a mouse. A traditional remote con-
troller, which uses buttons for user input, is no longer sufficient to
exploit full functionalities offered by the smart TV. More and more
devices in the future, such as Google Glasses, baby monitors, and
new generation of home appliances, will all desire mouse function-
alities, which allow users to choose from a wide variety of options
and easily click on different parts of the view.

On the other hand, a traditional mouse, which requires a flat and
smooth surface to operate, cannot satisfy many new usage scenar-
ios. A user may want to interact with the remote device while on
the move. For example, a speaker wants to freely move around
and click on different objects in his slide; a smart TV user wants to
watch TV in any part of a room; a Google Glass user wants to query
about objects while he is touring around. Wouldn’t it be nice if a
user can simply turn his smartphone or smart watch into a mouse
by moving it in the air?

Challenges: In order to enable the air mouse capability, the de-
vice movement should be tracked very accurately, within a few
centimeters. Existing indoor localization that provides meter-level
accuracy cannot achieve this goal. Many smart TV and set-top box
manufacturers provide advanced remote controllers [37]. Some of
them even provides motion control and gesture recognition using
inertial sensors, such as accelerometers and gyroscopes [34, 35].
Existing accelerometers are well known for their significant mea-
surement errors, and cannot provide accurate tracking. We further
confirm this using our measurement studies. Gyroscopes achieve
better accuracy in tracking rotation. However, a user has to learn to
how to rotate in order to control the displacement in a 2-D space.
This is not intuitive, and is especially hard for moving in a diagonal
direction, thereby degrading user experience and speed of control.

A few recent works track RFID tags in centimeter-level [40, 41,
46], but they require multiple special RFID readers, each with 4
antennas. Using external devices, such as depth sensor (e.g., Kinect
[1]) and IR sensor (e.g., Wii [2]), incurs significant additional cost
and limits the types of devices that can be controlled.

Our approach: In this paper, we propose Accurate Air Mouse
(AAMouse) that accurately tracks device movement in real time.
It enables any mobile device with a microphone, such as a smart
phone and smart watch, to serve as a mouse to control an electronic
device with speakers. A unique feature of our approach is that it
uses existing hardware in mobile and electronic devices.

Figure 1 shows an example of our system, where a mobile de-
vice with a microphone serves as a mouse for a smart TV with two

Figure 1: Enabling accurate device tracking using the Doppler
effect of the acoustic signal.

speakers. The smart TV emits inaudible acoustic signals, and the
mobile device records and feeds it back to the smart TV, which
estimates the device position based on the Doppler shift.

While there are some existing work that leverages the Doppler
shift for gesture recognition, tracking is more challenging since
gesture recognition only requires matching against one of the train-
ing patterns whereas tracking requires accurate positioning of the
device. This not only requires accurate estimation of frequency
shift, but also translating the frequency shift into a position involves
significant additional research issues, such as how to estimate the
distance between the speakers, the device’s initial device position,
and its new position based on the frequency shift.

We address these challenging issues in the following way. We
first estimate frequency shift and use it to position the device as-
suming that the distance between the speakers and the device’s
initial position are both known. Then we develop techniques to
quickly calibrate the distance between the speakers using the Doppler
shift. To address the device’s unknown initial position, we employ
particle filter, which generates many particles corresponding to the
device’s possible positions and filters the particles whose locations
are inconsistent with the measured frequency shifts. The device’s
position is estimated as the centroid of the remaining particles. To
further enhance robustness, we transmit signals at multiple frequen-
cies, perform outlier removal, and combine the remaining estima-
tions. Finally, we generalize our approach to handle the equipment
that has only one speaker along with another wireless device (e.g.,
WiFi). In this case, we use the frequency shift from the inaudible
acoustic signal and the phase of received WiFi signal to derive the
distance of the mobile device from the speaker and WiFi transmit-
ter. We apply the same framework to continuously track the device
in real time as before.

We implement a prototype on a smart phone and a desktop PC.
We perform detailed experiments and user studies to demonstrate
the feasibility and effectiveness of real-time tracking. Our evalua-
tion reveals the limitations of accelerometer based tracking. Mean-
while, we show AAMouse can track the trajectory of the device
movement with a median trajectory error of 1.4 cm. This is compa-
rable to RF-IDraw [41] that requires an array of 4 antennas. Com-
pared to Tagoram [46] with unknown track, AAMouse is 7 times
more accurate. In addition, we show that AAMouse also provides
better user experience than Gyroscope based approach, which is
widely used in commercial air mouse and smart TV remote con-
trollers, due to its more intuitive use.

Paper outline: The rest of this paper is organized as follows. Sec-
tion 2 uses measurement to show accelerometers are not sufficient
to provide accurate position information. We describe our approach
in Section 3, and present implementation details in Section 4. We
evaluate its performance in Section 5. We review related work in
Section 6, and conclude in Section 7.

2. MOTIVATION
Most recent smart phones are equipped with MEMS accelerom-

eter sensors to measure the movement of the device. A natural
thought is to use the accelerometer for device tracking. In this
section, we show that existing accelerometers do not provide high
enough accuracy for tracking or enabling mouse functionalities.
We describe fundamental reasons behind the limited accuracy.

An accelerometer typically gives 3-axis output that allows us to
calculate both the direction and speed of the movement. In theory,
we can integrate acceleration to get velocity and integrate veloc-
ity to get the distance traveled. However, it is well known that the
accelerometer based positioning offers limited accuracy [18, 26].
Here are a few fundamental issues with using acceleration for de-
vice tracking.

1. The measurement result is easily affected by gravity. While
there have been some techniques to remove the effect of grav-
ity, their accuracy is still limited.

2. Computing velocity based on acceleration is hard (e.g., the
acceleration is close to zero as the device movement speed
approaches a constant speed, and the acceleration is large as
the device suddenly stops).

3. Estimating distance traveled based on acceleration requires
double integration, and small measurement error can easily
get exploded during double integration.

In this section, we conduct measurement studies and confirm that
existing acceleration based tracking is error-prone. We will show
more user study on accelerometer based tracking in Section 5.

To demonstrate these issues, we observe that the acceleration
measured by the accelerometer inherently includes gravity, which
is approximately 9.8 m/s2 on earth. When the device lies per-
fectly flat, gravity only affects the acceleration of Z-axis, so X and
Y-axis have zero accelerations. However, while holding the device,
one cannot avoid natural hand vibration, which generates gravity
induced acceleration in all axes. This acceleration is much larger
than that caused by intentional movement (e.g., which is around
0.12 m/s2 on average in our experiments). This makes the accel-
eration based tracking unreliable.

One way to remove gravity from the measured acceleration is to
apply a high-pass filter [11]. As the frequency of gravity is low, it
is considered that filtering low frequency acceleration is effective
in reducing the impact of gravity. Google Android SDK provides
a linear accelerometer API, which gives acceleration after a high-
pass filter. This is helpful in removing gravity in a coarse scale,
but it still does not provide sufficient accuracy to track the device
position. This is due to two reasons: (i) filtering always incurs
additional delay and (ii) residual acceleration after filtering is still
large enough to result in significant positioning errors.

Next we perform the measurement of linear acceleration in An-
droid devices. We use Google NEXUS 4 and Samsung Galaxy
3. Their accelerometers come from InvenSense [15], which is one
of the few accelerometer manufacturers that provides accelerome-
ters for latest iPhones and many android phones, since InvenSense
MEMS sensors are considered the most accurate.

Our experiments have 3 users. The sampling rate of the ac-
celerometer was set to the highest (i.e., 200Hz). To get the ground-
truth, we attach a camera on the ceiling, and run an object tracking
program to track the mobile phone movement precisely.

Figure 2(a) shows a snapshot of the acceleration while a user is
holding the device. We only plot Y-axis acceleration for ease of
viewing. While a user is holding the device, the average magnitude

0 1 2 3 4
−0.5

0

0.5

Time (second)

A
cc

el
er

at
io

n
(m

/s
2)

(a) Acceleration while the device is not moving

0 1 2 3 4 5
−0.5

0

0.5

Time (second)

A
cc

el
er

at
io

n
(m

/s
2)

(b) Acceleration while the device is moving

0 1 2 3 4 5

−40

−20

0

20

Time (second)

D
is

ta
nc

e
(c

m
)

Accelerometer
Ground−truth

(c) Moving distance tracked by accelerometer

Figure 2: Comparison of acceleration while device is moving
and not moving. The device’s position tracked by an accelerom-
eter significantly deviates from the ground truth.

is 0.05 m/s2 across all users and devices. This can be regarded as
measurement noise because it is generated while the device is not
moving.

Figure 2(b) shows the acceleration while the user is moving
the device in one direction. In this experiment, users are asked to
mimic the speed of controlling a mouse. The device starts to move
at 1 second, and stops at 4.3 second. Comparing Figure 2(a) and
(b), it is hard to tell exactly when the device starts moving and when
it stops. At the beginning of the movement, it gives high enough
acceleration to calculate the initial velocity, but as the device ve-
locity approaches close to a constant, the acceleration decreases,
which makes the position tracking unreliable. In addition, even af-
ter the movement has stopped, the acceleration remains high due to
deacceleration and filtering noise.

Figure 2(c) shows the distance calculated by double integration
of the acceleration. We can observe the tracking error is signifi-
cant, and the direction is completely off. While this is just one run,
it is common to see such a significant error in other runs. The av-
erage acceleration while the device is moving is 0.12 m/s2, which
is not very different from the measurement noise. Using double in-
tegration to get the distance causes small measurement error to get
accumulated quickly. Figure 2(c) shows that the distance increases
even after the device has stopped due to the accumulated error. This

shows that the existing accelerometers do not provide high enough
accuracy to track small-scale movements.

3. OUR APPROACH
This section presents our approach to device tracking.

3.1 Doppler Effect Based Tracking
The Doppler effect is a well known phenomenon where the fre-

quency of a signal changes as a sender or receiver moves [24].
Without loss of generality, we consider that only the receiver moves
while the sender remains static. Let F denote the original fre-
quency of the signal, F s denote the amount of frequency shift,
and v and c denote the receiver’s speed towards the sender and the
propagation speed of wave, respectively. They have the following
relationship:

v =
F s

F
c. (1)

So if we know F and c and can measure F s, we can use the above
relationship to estimate the speed of movement. Compared to the
acceleration that requires double integration to get the distance, the
Doppler shift allows us to get distance using a single integration,
which is more reliable.

The Doppler effect is observed in any wave, including RF and
acoustic signal. We use acoustic signal to achieve high accuracy
due to its (i) narrower bandwidth and (ii) slower propagation speed.
Its narrower bandwidth makes it easy to detect 1 Hz frequency shift
than that in RF signals (i.e., 44.1 KHz in acoustic signals versus 20
MHz in WiFi). In order to improve the accuracy of detecting fre-
quency shift in WiFi signals, WiSee [30] proposes to reduce the
bandwidth of the received signal by first decoding the data to get
the channel estimate and then re-encoding repeated data using the
estimated channel. Even with significant computational overhead,
WiSee detects only 2 Hz frequency shift. In comparison, we can
easily detect 1 Hz frequency shift in real-time using acoustic signal.
Even assuming that we can detect 1 Hz frequency shift in both WiFi
and acoustic signals, the accuracy in speed estimation is still higher
in acoustic signal due to its slower speed. The acoustic signal trav-
els at 346. m/s in dry air at 26 ◦C. If we use sound frequency of
17 KHz, the speed resolution is 1×346.6

17000
≈ 0.02m/s = 2cm/s.

In comparison, when the RF center frequency is 2.4 GHz, the res-
olution is 1×3×108

2.4×109
= 0.125m/s = 12.5cm/s, which is around

6 times as large. This implies that for the same movement, the
Doppler shift of the acoustic signal is 6× that of RF signal, which
allows us to more accurately measure the movement speed.

Moreover, acoustic signal can be easily generated and received
using speakers and microphones, which are widely available on
TVs, Google Glasses, smartphones, and smart watches. To avoid
disturbance to other people, we can generate inaudible acoustic sig-
nals. While in theory some people may hear up to 20 KHz, we find
sound above 17 KHz is typically inaudible. We can easily emit
inaudible sound using any device that can play audio files with a
sampling rate of at least 44.1 KHz.

We perform a simple experiment to see how accurately we can
track the device movement using the Doppler shift. Using MAT-
LAB, we generate a 17 KHz sinusoid audio file that takes 1 Hz in
the frequency domain, and play it using a normal PC speaker, and
record it using a microphone on Google NEXUS 4. We measure
the Doppler shift while the device is moving towards the speaker.
The details on how to accurately calculate the Doppler shift will be
explained in Section 3.2. Figure 3 shows the Doppler shift and the
moving distance over time estimated by Equation 1. The device
starts moving at 1 second and stops at 2.8 second. Unlike acceler-

0 1 2 3 4
0

2

4

6

8

Time (second)

D
op

pl
er

 s
hi

ft
(H

z)

(a) Doppler shift

0 1 2 3 4
0

5

10

15

20

Time (second)

D
is

ta
nc

e
(c

m
)

Doppler
Ground−truth

(b) Moving distance

Figure 3: The Doppler shift and the moving distance estimated
based on it. The tracking error is less than 1 cm. The red dots
in Figure 3(a) represent the start and end of the movement.

ation measurement in Figure 2, it is easy to tell the start and stop
time of the device movement (e.g., the Doppler shift is well above
1 Hz during movement and well below 1 Hz when it stops). More-
over, since we get speed from the Doppler shift and can calculate
the distance traveled using a single integration rather than double
integrations in accelerometer, the accuracy improves significantly.
As shown in Figure 3(b), the maximum tracking error is only 0.7
cm.

Based on the above concept, we develop the following system,
as illustrated in Figure 1, where a sender with two speakers sends
inaudible sound pulses to a mobile device to be tracked. The mo-
bile device can be any device with a microphone, such as a smart
phone and smart watch. To distinguish which speaker generates
the signal, the two speakers emit different frequencies. The device
initiates tracking using a simple gesture or tapping the screen, and
starts recording the audio signal from the microphone. The mobile
device can either locally process the received signal to compute
its location, or send the received audio file via a wireless interface
(e.g., WiFi or bluetooth) back to the sender for it to process the
data and track the device. The audio signal is simply a sequence
of pulse-coded modulation (PCM) bits, which is typically 16 bits
per sample. Assuming 44.1 KHz sampling rate, the amount of the
audio data per second is 705.6 Kb, which is lower than the bit-rate
of classic Bluetooth (i.e., 2.1 Mbps) [13]. Depending on the appli-
cation, it can be translated into the cursor position or used to track
the trajectory of the user’s movement.

There are several important research issues we should address to
realize the above system:

• How to estimate the Doppler shift?

• How to estimate the position based on the Doppler shift?

• How to improve robustness?

• How to determine the distance between speakers?

• How to determine the mobile device’s initial position?

• How to extend this approach to control devices without mul-
tiple speakers?

Below we address each of these challenges in turn. Note that we
focus on tracking in a 2-D space for mouse applications. Other
applications may require tracking in a 3-D space. Our approach
supports 3-D tracking when there are 3 or more anchor points (e.g.,
3 speakers).

3.2 Estimating the Doppler Shift
To record sound in inaudible range (i.e., between 17KHz and

22KHz) without aliasing, we should use the audio sampling rate
at least 44 KHz [27]. We use 44.1 KHz sampling rate since most
android devices support it by default. To achieve high tracking ac-
curacy, we aim to estimate frequency shift with a resolution of 1
Hz. This implies we need to perform 44100-point FFT to analyze
the signal in the frequency domain in 1 Hz-level. This poses a chal-
lenge: a long FFT does not allow us to continuously track a device
in real time. For 44100-point FFT, we need to store 44100 sam-
ples, which takes one second. During that time, the device’s posi-
tion might already have changed several times, which significantly
degrades the reliability and responsiveness of tracking.

To address this issue, we use Short-term Fourier Transform (STFT),
which is used to analyze the change of spectrum over time [42]. It
uses fewer data samples than that required by FFT. The missing
values of the input is filled with zeros. Then the FFT output has
desired resolution. However, this alone may cause aliasing due to
under-sampling. To minimize the distortion, windowing is applied
in time domain and each window contains all the audio samples
during the current sampling interval. We use Hamming window
for that purpose [16].

In our design, we set input length to 44100 and use 1764 au-
dio samples (i.e., the total number of audio samples in 40 ms) as
the input, which gives FFT output with 1 Hz resolution every 40
ms. From it, we measure the Doppler shift by finding the peak fre-
quency (i.e., the frequency with the highest value) and subtracting
it from the original signal frequency. The complexity is determined
by the width of spectrum to be scanned in order to detect the peak
frequency. We set it to 100 Hz assuming that the maximum possi-
ble Doppler shift is 50 Hz, which corresponds to 1 m/s. According
to our experiment, when a person moves a mobile device with a
hand, its speed does not exceed 1 m/s. Figure 4(a) and (b) show
an example of the received audio signal in the frequency domain
and the estimated Doppler shift, respectively, while the device is
moving around a circle.

3.3 Tracking the Position
Next we use the estimated frequency shift to derive the position

of the mobile device. In this section, we assume the distance be-
tween the speakers and the initial position of the mobile device are
both known. We will relax these assumptions in Section 3.5 and
3.6.

We estimate the frequency shift from the two speakers to get the
distance change from the speakers. More specifically, let D de-
note the distance between the speakers. We construct a virtual two-
dimensional coordinate where the origin is the left speaker and the
X-axis is aligned with the line between speakers. In this coordi-
nate, the left and right speakers are located at (0, 0) and (D, 0),
respectively. Let (x0, y0) denote the device’s initial position in this
coordinate. The distances from the device to the speakers 1 and 2
are denoted by D0,1 and D0,2, respectively. Let ts be the sampling
interval in which we estimate the frequency shift. Our evaluation

Time (s)

P
ow

er
/F

re
q.

 (
dB

/H
z)

0 1 2 3

1.79

1.8

1.81

x 10
4

−150

−100

−50

(a) Spectrogram

0 1 2 3 4
−20

−10

0

10

20

Time (second)

D
op

pl
er

 s
hi

ft
(H

z)

(b) Doppler shift

Figure 4: Frequency domain analysis of the recorded audio and
the Doppler shift.

uses 40 ms, which means the cursor’s position is updated every
40 ms, which corresponds to popular video frame rates of 24-25
frames per second [10]. After ts, we can get the new distance from
the two speakers D1,1 and D1,2 using the Doppler shift. From the
measured Doppler shift and Equation 1, we get:

D1,1 = D0,1 +

(
F s
1,1

F1
c

)
ts,

D1,2 = D0,2 +

(
F s
1,2

F2
c

)
ts,

where Fk and F s
i,k are the sound frequency and Doppler shift from

speaker k during the i-th sampling interval, respectively.
Given the updated distance from the speakers, the remaining

question is how to get the new position. As illustrated in Figure 5,
the new position should be the intersection of the two circles whose
center points are (0, 0) and (D, 0), and radii are D1,1 and D1,2,
respectively. We can calculate the intersection of the two circles
efficiently as follows [3]:

θ1 = cos−1

(
D2

1,1 +D2 −D2
1,2

2DD1,1

)
,

(x1, y1) = (D1,1 cos(θ1), D1,1sin(θ1)),

(x2, y2) = (D1,1cos(−θ1), D1,1sin(−θ1)),

where (x1, y1) and (x2, y2) are two intersection points of the cir-
cles. Note that if D1,1+D1,2 < D, there is no intersection between
the two circles. If D1,1 +D1,2 = D, there is one intersection. In
the other cases, there are two intersection points. In the last case,
we choose the point closer to (x0, y0) as the next position, denoted
as (x1, y1), since the movement is continuous and our sampling
interval is small.

Figure 5: Tracking the position based on the Doppler shift.
Whenever a new Doppler sample arrives, we calculate the dis-
tance from the speakers, and estimate the new position by find-
ing the intersection of the two circles.

In the next Doppler sampling interval, we measure F s
2,1 and F s

2,2,
calculate D2,1 and D2,2, and derive (x2, y2) from it. This process
is repeated until the device stops moving. To minimize the impact
of errors in the frequency shift estimation, we filter out the fre-
quency shift below 1 Hz and use the remaining frequency shifts to
estimate the speeds and distance.

3.4 Improving the Accuracy
To achieve high accuracy in device tracking, it is crucial to ac-

curately estimate the Doppler shift. However, measuring it from a
single sound wave may not be reliable. The accuracy of estimating
the Doppler shift in part depends on SNR of the received signal.
Due to frequency selective fading, SNR varies across frequencies.
To enhance robustness, we send 1-Hz sound tones at different cen-
ter frequencies, and use all of them to measure the Doppler shift.

In order to leverage multiple frequencies, the first question is
which center frequencies should be used. If the different center
frequencies are too close, they will interfere with each other espe-
cially under movement. As mentioned earlier, the hand movement
speed for mouse applications is typically within 1 m/s, which cor-
responds to 50 Hz Doppler shift. To be conservative, we set adja-
cent sound tones to be 200 Hz apart. Based on our evaluation result
in Section 5.1, we allocate 10 sound tones for each speaker.

The next question is how to take advantage of the measurements
at multiple frequencies to improve the accuracy. One approach
is to apply Maximal Ratio Combining (MRC) technique used in
the receiver antenna diversity, which averages the received signal
weighted by the inverse of the noise variance. It is known to be
optimal when the noise follows a Gaussian distribution [44]. How-
ever, we find some frequencies may incur significantly higher noise
than others, and it is important to remove such outliers before com-
bining them using a weighted average. In our system, the Doppler
sampling interval is 40 ms. 10 Hz difference from the previous
measurement implies the velocity has changed 0.2 m/s during 40
ms, which translates into an acceleration of 5 m/s2. Such a large
acceleration is unlikely to be caused by the device movement. So
whenever the change in frequency shifts during two consecutive
sampling intervals (i.e., |F s

i+1,k − F s
i,k|) is larger than 10 Hz, we

consider it as an error and remove it before performing MRC. In an

0 0.5 1 1.5 2
−20

−10

0

10

20

Time (second)

D
op

pl
er

 s
hi

ft
(H

z)

(a) Doppler shift measured from 5 tones

0 0.5 1 1.5 2
−10

−5

0

5

10

Time (second)

D
op

pl
er

 s
hi

ft
(H

z)

(b) Doppler shift after MRC without outlier removal

0 0.5 1 1.5 2
−10

−5

0

5

10

Time (second)

D
op

pl
er

 s
hi

ft
(H

z)

(c) Doppler shift after MRC with outlier removal

Figure 6: Improving the accuracy of the Doppler shift estima-
tion using MRC and outlier removal.

exceptional case where all measurement differences exceed 10 Hz,
we select the one closest to the previous measurement. After MRC,
the Kalman filtering is applied to smooth the estimation. We set the
process noise covariance Q and measurement noise covariance R
in the Kalman filter both to 0.00001.

Figure 6 shows the raw Doppler shift measurements and the re-
sult after MRC with and without outlier removal. It shows that the
Doppler estimation after outlier removal yields more smooth out-
put and likely contains smaller errors. In Section 5.1, we show that
the outlier removal improves the accuracy by 26% when 5 sound
tones are used.

3.5 Finding the Distance between the Speak-
ers

So far, we assume the distance between the speakers is known
a priori. In practice, this information may not be available in ad-
vance. One solution is to ask the user to measure the distance be-
tween the speakers using a ruler and report it. This is troublesome.
Moreover, sometimes users do not know the exact location of the
speakers. Therefore, it is desirable to provide a simple yet effective
calibration mechanism that measures the speaker distance when-
ever the speakers’ positions change.

(a) Calibration process.

0 2 4 6 8

−20

−10

0

10

20

Time (second)

D
op

pl
er

 s
hi

ft
(H

z)

F
s
1

F
s
2

(b) Doppler shift while scanning the TV (round trip).

Figure 7: Illustration of the calibration process. We measure
the distance between two speakers by estimating T1 and T2

(i.e., the time it gets closest to the left and right speakers, re-
spectively) and the speed during T1 and T2 using the Doppler
shift. The red dots in Figure 7(b) represent T1 and T2, where
T1 = 1.48 and T2 = 3.58.

We propose a Doppler based calibration method. It only takes
a few seconds for a user to conduct calibration. As shown in Fig-
ure 7(a), during the calibration, the TV emits inaudible sound and
the device records it using its microphone. The user scans the TV
with his hand holding the device. The user starts from the left end
of the TV, and move towards the right end of the TV in a straight
line. The user stops after it moves beyond the right end, and comes
back to the left end. The user can repeat this procedure a few times
to improve the accuracy.

Figure 7(b) shows the change of the Doppler shift while a user
is performing the calibration. We can easily detect the time when
the device moves past the left and right speakers, and measure the
distance by calculating the movement speed based on the Doppler
shift. As mentioned in Section 3.1, the Doppler shift is positive as
the receiver moves towards the sender. When the device is at the
left side of both speakers, both F s

1 and F s
2 are positive as it moves

towards the right. As it passes the left speaker at 1.48 second (as
shown in Figure 7), F s

1 changes to negative while F s
2 stays positive.

Similarly, as the device passes the right speaker, F s
2 changes from

positive to negative. By finding these points, we find the amount
of time user spends moving between the two speakers, and mea-
sure the distance using the Doppler shift. To improve the accuracy,
we obtain one distance estimate in each direction, and average the
estimated distances in both directions.

One question is how many repetitions are required to achieve
reasonable accuracy. It depends on the distance error and its im-
pact on device tracking. To better understand the impact, we inject
error to the distance estimation. As shown in Section 5, when users
repeat the calibration three times (i.e., moving the mobile device
back and forth for three times), the 95 percentile error is 5 cm. The

experiment also shows the impact of 5 cm speaker distance error on
device tracking is negligible. Therefore, three repetitions is gener-
ally sufficient.

3.6 Finding the Initial Device Position
Next we consider how to handle the issue that the device’s initial

position is unknown. To address this, we use particle filter. Particle
filter has been successfully used in localization to address the un-
certainty of the location [33, 9]. We use it in the following way. Ini-
tially, we generate many particles uniformly distributed in an area
where each particle corresponds to a possible initial position of the
device. In the next Doppler sampling interval, it determines the de-
vice movement from the current particles. If the device movement
is not feasible, the particle is filtered out. In Section 3.3, we men-
tioned that the position of the device is determined by finding the
intersection of the two circles. If D1+D2 ≥ D, we can find one or
more intersections; otherwise, there is no intersection. In this case,
we regard the current particle is infeasible and filters it out. The
device movement is determined by averaging the movement of the
all remaining particles.

More specifically, let P be the set of particles, which is initial-
ized as P = {(x1

o, y
1
o), ..., (x

N
o , yN

o)}, where (xk
o , y

k
o) is the initial

position of the kth particle and N is the number of particles. Dur-
ing a new Doppler sampling interval, the particles that give infeasi-
ble movement are filtered out from P. After the ith movement, the
position at the (i+ 1)th sample is tracked by averaging the differ-
ence between the (i+ 1)th and ith particle positions. That is,

(xi+1, yi+1) = (xi+

∑
k∈P(x

k
i+1 − xk

i)

|P| , yi+

∑
k∈P(y

k
i+1 − yk

i)

|P|),

where |P| is the number of remaining particles in P.
The question remains how many particles to allocate. There is a

trade off between complexity and accuracy. Increasing the number
of particles is likely to increase the accuracy of initial position esti-
mation. We use 625 particles to balance the trade off. 625 particles
take 3.63 ms to process, well below 40 ms sampling interval. Refer
to Section 4 for further details of this choice.

In Section 5.1, we evaluate the impact of the initial position er-
ror on the tracking accuracy. It shows the tracking accuracy is not
sensitive to the initial position error. Even with 20 cm error, the
median tracking error increases by only 0.2 cm. Note that we de-
termine the initial position not because we want to know the exact
initial location of the device, but because we need it to track the
next position. Regardless of the physical position of the device, the
cursor always starts from the center of the screen. So the initial
position error does not directly translate into the tracking error.

3.7 Controlling a Device with One Speaker
So far we have assumed the equipment to be controlled has two

speakers so that we can estimate the distance from these speak-
ers to track the mobile device. All Smart TVs have two speakers.
Most laptops (e.g., Lenovo X series, Acer Aspire S3, Dell XPS 13)
have two speakers. Some recent laptops (e.g., Dell Studio 17) have
3 speakers to offer better multimedia experience. Three speakers
provide more anchor points and allow us to track in a 3-D space or
further improve tracking accuracy in a 2-D space.

In this section, we further extend our approach to handle the de-
vices that have only one speaker. We assume it has another wireless
device (e.g., WiFi or bluetooth). Then we use the Doppler effect of
acoustic signal from the speaker along with the RF signal from the
wireless device to enable tracking.

We use the same framework as described above for tracking. The
new issue is how to estimate the distance between the mobile de-

vice and the wireless device on the equipment. We use the follow-
ing known relationship from the phase rotation of the received RF
signal to compute the distance:

ϕt1 = −mod(
2π

λ
dt1, 2π)

ϕt2 = −mod(
2π

λ
dt2, 2π)

where ϕt1 and ϕt2 denote the phase of the received signal at the
mobile device at time t1 and t2, respectively, and dt1 and dt2 are
their respective distances. This enables us to track the new distance
from the RF source by

dt2 = (
ϕt2 − ϕt1

2π
+ k)λ+ dt1. (2)

k is an integer and set to 0 here, since our sampling interval of
RF phase is 10 ms and it is safe to assume we move less than one
wavelength during a sampling interval.

One of the challenges in RF phase based tracking is accurate
measurement of the received signal phase. In particular, the carrier
frequency offset (CFO) between the sender and the receiver causes
the phase to change over time even if the receiver is not moving.
A few recent works, such as MegaMIMO [32, 47], show that it
is feasible to track the phase change over time with precise CFO
estimation. To simplify our implementation, we connect a sender
and a receiver with the same external clock in our experiment to
guarantee that they have no frequency offset. We estimate the phase
of the receiver while the sender is continuously sending 1 MHz
wide OFDM symbols.

As in Section 3.3, if we know the device’s initial location and the
distance between the speaker and RF source, we can track the po-
sition by finding the intersections of the two circles whose radii are
the distance measured by the Doppler shift and RF phase tracking,
respectively. We can again apply particle filter to address the issue
that the device’s initial position is unknown. We can adopt simi-
lar calibration to measure the distance between the speaker and RF
source by detecting the speaker’s position based on the change in
the sign of the Doppler shift (i.e., going from positive to negative)
and detecting the RF source’s position based on the change in the
phase of the received RF signal (i.e., going from decreasing phase
to increasing phase).

4. IMPLEMENTATION
We implement our system and validate the feasibility of the real-
time device tracking. The mobile program is implemented on An-
droid, which collects the inertial sensor data or audio signal and
sends it to the tracking processor through Android debug bridge.
Tracking is implemented in JAVA, which tracks the position of the
device using the audio signal in real-time, as described in Section 3.
For comparison, we also implement other tracking methods based
on an accelerometer, gyroscope, and camera.
AAMouse: Unless otherwise specified, we use the Doppler based
tracking. Since tracking requires non-negligible amount of compu-
tation, all tracking algorithms are handled by the tracking proces-
sor while the mobile device is only responsible for delivering the
recorded audio samples to the processor. To support real-time pro-
cessing, we observe the main processing overhead is FFT. During
each Doppler sampling interval (i.e., 40ms), we 1) perform 44100-
point FFT, 2) find peak frequency in each band, 3) combine them
after removing outliers, and 4) calculate the position for each par-
ticle. Except FFT, the complexity is O(WN + P), where W is
the width of spectrum to scan for each tone, N is the number of

200 400 600 800

3

3.5

4

The number of particles

P
ro

ce
ss

in
g

T
im

e
(m

s)

Figure 8: Processing time with a varying number of particles.

tones, and P is the number of particles. To minimize the computa-
tional overhead, we set W and N to 100 and 10, respectively. To
determine how many particles to use, we measured the processing
time of tracking that is performed every Doppler sampling interval
(i.e., 40 ms) while varying the number of particles from 100 to 800.
We used a PC with Intel i7 2GHz processor and 4GB memory as
our testbed. As shown in Figure 8, there is a constant overhead
of 2.8 ms on average, which does not depend on the number of
particles. The additional overhead incurred by particle filtering is
relatively small, and linearly increases with P . Therefore, we allo-
cate 25×25 = 625 particles every 20 cm to cover 5m×5m space.
In this case, it takes 3.63 ms to process the data, well below 40 ms
sampling interval. The computation overhead is reduced further
because the particles are filtered out during the tracking.

We also evaluate the Doppler and phase based tracking for an ob-
ject that has only one speaker. We use USRP nodes as a sender and
receiver to get the phase information, and attach the USRP receiver
antenna to the smartphone with a microphone so that the WiFi and
audio signals are received at the same location. We implement a
UHD program that records the phase of the received RF signal at
USRP and feeds it to the tracking program, which tracks the de-
vice location using the phase change of the RF signal as well as
Doppler shift of the acoustic signal. While we use USRP to gener-
ate RF signals, one can also use commodity WiFi cards to get the
phase information and remove CFO [17, 18].

Accelerometer based tracking: For comparison, we also imple-
ment accelerometer based tracking, which uses double integration
of acceleration to estimate distance. We follow the instruction in [36].
One of the difficulties in accelerometer based positioning is to de-
termine the threshold used for detecting device movement. It is
difficult to find a proper threshold that achieves both low false pos-
itive and low false negative. So we set a low threshold (i.e., 0.07
m/s2) to avoid treating device movement as stop by mistake.

Gyroscope based tracking: This mimics the gyroscope based track-
ing used in commercial air mouse products [5] and smart TV mo-
tion controllers [34, 35]. The gyroscope measures the angular ve-
locity, and translates it into a 2-D displacement of a cursor.

Camera based tracking: The goal of camera based tracking is to
get the ground-truth of the device movement. Using a camera at-
tached to the ceiling of our laboratory, we track the position of the
device very precisely. We implement a simple vision based object
tracking program using OpenCV [7]. To improve the accuracy, we
attach a label with a distinct color (blue in our setup) to the device
and implement a program to track that color. Camera based track-
ing is suitable for providing the ground truth in our setting, but is
not a practical solution in general, since it requires not only lines
of sight to the object at all time but also computational intensive
and error-prone object recognition and tracking (especially for a
general object and background).

5. EVALUATION
Experimental setup: We evaluate the tracking performance of
AAMouse and compare its usability with the other tracking meth-
ods. We use a DELL XPS desktop with Intel i7 CPU and 4GB
memory as a main processor, and use Google NEXUS 4 as our
main mobile device for user study. The audio source is Logitech
S120 2.0 speaker. The volume of the speaker is set to 30 out of
100 to make sure it works in a normal volume range. By default,
the distance between the two speakers is 0.9 m, and the distance
between the speakers and the mobile device is around 2 m. We also
vary these values to understand their impacts.

For our experiment, we implement a program that displays a
pointer and the trajectory of the device movement in real-time so
that users can see how well the pointer moves as they intend. To
emit sound tones in inaudible frequency range, we play a wave for-
mat audio file with specific frequency tones that we generate using
MATLAB. The left and right speakers use 17 - 19 KHz and 19 -
21 KHz spectrum, respectively. Each speaker emits 10 1-Hz sound
tones with 200 Hz spacing in between. The best 5 tones are selected
to estimate the Doppler shift as described in Section 5.1.

Evaluation methodology: We conduct user study with 8 students
(5 male and 3 female students). They use all four schemes: AAMouse,
accelerometer, gyroscope, and camera based tracking. Each user
has 10-minute training for each scheme. When using AAMouse,
the users are asked to hold the device in such a way to avoid their
hands blocking the microphone. When evaluating the accelerom-
eter and gyroscope based approaches, the users hold the device so
that the phone is parallel to the line defined by the two speaker so
that the coordinates of the accelerometer or gyroscope are consis-
tent with the coordinates defined by the speakers. To quantify the
accuracy and usability, we perform two kinds of experiments. The
first experiment is to validate if the mobile device can be used as
a pointing device like a mouse. We show a target on the screen,
and ask the user to touch it. Each user repeats for 40 times. In the
second experiment, we show simple shapes, such as a circle, trian-
gle, diamond, and heart on the screen, and ask the users to use a
mobile device to trace the shapes on the screen as closely as pos-
sible so that we can quantify how accurately they can control the
pointer. Each user draws a shape for 5 times. The overall experi-
ment lasts about one hour for each user excluding the training time.
The average distance of the trajectory in the pointing and drawing
experiments are 21.1 cm and 65.4 cm, respectively. The average
tracking times for the pointing and the drawing are 3.2 and 8.4 sec-
onds, respectively. The tracking and visualization are both done
online in real-time. Meanwhile, we also store the complete traces
to compute various performance metrics offline. The error is mea-
sured by comparing the actual pointer trajectory with that from the
camera based tracking. We also compare the distance traveled in
order to touch a target, which reflects the amount of user effort.

5.1 Micro benchmark
Before presenting user study results, we first show a few micro

benchmarks.

Trajectory Accuracy: To quantify the accuracy of trajectory track-
ing, we compare the trajectory a user traverses when trying to touch
a target or draw a shape using AAMouse with the trajectories tracked
by the camera, which serves as the ground truth. We sample the
trajectory tracked by AAMouse at the camera sampling rate (i.e.,
every 50 ms). For each sampled point, we compute the distance to
the closest point on the trajectory tracked by the camera. We use
the average distance across all sampled points as the error metric.

1 2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

The number of sound tones

M
ea

n
er

ro
r

(c
m

)

(a) With outlier removal.

1 2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

The number of sound tones

M
ea

n
er

ro
r

(c
m

)

(b) Without outlier removal.

Figure 9: AAMouse trajectory error with different numbers of
sound tones. The numbers of sound tones in both figures are
the numbers before outlier removal.

Figure 9(a) shows the mean trajectory error as we vary the num-
ber of sound tones used to estimate the Doppler shift, where the
error bars represent 90% confidence interval. We observe that the
mean trajectory error decreases from 2.7 cm to 1.9 cm by increas-
ing the number of sound tones from 1 to 2. The error decreases fur-
ther as we use more sound tones, but the improvement is marginal.
Therefore, we decide to use 5 tones in the remaining evaluation to
balance the tradeoff between accuracy and computation overhead.

Figure 9(b) is the mean trajectory error without the outlier re-
moval introduced in Section 3.4. The results show that the outlier
removal is crucial. If outliers are not removed, the benefit of using
more tones is smaller and it requires more sound tones to achieve
the same accuracy. This is because we need many samples to mit-
igate the significant error introduced by the outliers. With 5 sound
tones, the mean trajectory error with outliers is 26% higher than
that without outliers; even with 10 sound tones, the mean trajectory
error with outliers is still around 6% higher.

Speaker distance error: In this experiment, a user moves the mo-
bile device across the sender’s left and right speakers to estimate
the distance between its two speakers, as described in Section 3.5.
The actual distance between the speakers is 0.9 m.

Figure 10 shows the CDF of distance error as we vary the num-
ber of scannings, where a scan means that a user moves the device
from the left end to the right end, passing both speakers, and then
comes back (i.e., one round-trip). As we would expect, increas-
ing the number of scannings reduces the measurement error. When
the user scans three times, 95% and 99% of the experiments have
measurement errors within 5 and 10 cm, respectively. Further in-
creasing the number of scannings yields marginal improvement in
the accuracy.

Next we examine how the error in the speaker distance estima-
tion affects the tracking accuracy. We inject varying amount of
error to the speak distance estimation. As shown in Figure 11,
the tracking error increases slightly with the increasing error in the

0 5 10 15 20
0

0.5

1

Distance Error (cm)

C
D

F

1 scans
3 scans
5 scans

Figure 10: CDF of the speaker distance measurement result
with different numbers of scannings.

0 5 10 15 20
1

1.5

2

2.5

Speaker Distance error (cm)

T
ra

je
ct

or
y

er
ro

r
(c

m
)

Figure 11: Trajectory error as the error of the speaker distance
varies.

PF 0 5 10 15 20
0.5

1

1.5

2

Initial Position Error (cm)

T
ra

je
ct

or
y

er
ro

r
(c

m
)

Figure 12: Trajectory error as the error of the device initial
position varies.

speaker distance estimation. The speaker distance estimation error
of 10 cm increases the mean error by 0.05 cm (i.e., from 1.51 to
1.56 cm). In Section 3.3, we explain that the position is tracked
by finding the intersections of two circles whose center points are
the speaker locations. Erroneous estimation of speaker positions
degrades tracking accuracy, but the degradation is not significant,
as shown in Figure 11.

Impact of initial position error: Finally, we show the impact of
the initial position estimation error on the tracking accuracy. As
it is difficult to know the initial position of the device in advance,
we use particle filter as described in Section 3.6. For this experi-
ment, the users start moving the device from a fixed initial position
and perform the same experiments of pointing and drawing. We
compare the tracking error when (i) the initial position is known,
(ii) the initial position is known with a fixed amount of error, and
(iii) using particle filter to estimate the initial position. Note that
this is the only experiment where users start from the fixed initial
position, while in all the other experiments users all start from an
arbitrary initial position, which is more realistic.

Figure 12 presents the mean tracking error where PF is our par-
ticle filter approach. If the initial position is known, the accuracy

can be further improved, but this is often infeasible. With particle
filter, we can limit the impact of the initial position error. The re-
sult shows that the tracking error with particle filter is quite small:
1.4 cm, which is slightly larger than the case when there is 15 cm
error in the initial position estimation, but smaller than that of 20
cm error in the initial position estimation.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Time (second)

F
ilt

er
in

g
ra

te

Figure 13: Particle filter convergence time.

Particle filter convergence: Figure 13 shows the particle filter
convergence. Using the user experiment data, we plot the average
fraction of the particles that are filtered over time. The result shows
that after one second since the tracking starts, 93% of particles are
filtered out. This demonstrates that particle filter converges fast.

5.2 AAMouse evaluation
Tracking accuracy: Next we compare the accuracy of AAMouse
with the accelerometer based tracking. Their errors are measured in
the same way as described in Section 5.1. Figure 14 shows the cu-
mulative distribution of the trajectory errors for AAMouse and the
accelerometer based tracking. The median error for AAMouse is 1.4
cm while that for the accelerometer is 17.9 cm. The 90th percentile
errors of AAMouse and accelerometer are 3.4 cm and 37.7 cm, re-
spectively. AAMouse has 10 times lower error than accelerometer
in terms of both the median and 90th percentile errors.

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Trajectory Error (cm)

C
D

F

Accelerometer
AAMouse without noise
AAMouse with noise

Figure 14: CDF of trajectory error.

Tracking accuracy under background noise: In order to evaluate
the robustness of AAMouse against background noise, we perform
additional experiments on AAMouse while the speakers generate
both music and inaudible sound tones for tracking. This emulates
the scenarios where smart TVs play background sound while send-
ing inaudible acoustic signals for device tracking. According to
[20], electronic music tend to generate noise at higher frequencies
than other music genres. Therefore we use a few music clips in
YouTube and select “Top EDM 2014 Music Playlist Tracklist” [25]

1 2 3 4 5 6
0

0.5

1

D
a
 / D

s

C
D

F

Camera
AAMouse
Gyroscope

Figure 15: CDF of unnecessary movement to reach the target.

as the background noise. As shown in Figure 14, the accuracy re-
mains the same. This is because the frequency of human voice and
many music genres, such as Jazz, Pop and Classic, do not exceed
10 KHz. Even for some music with clangs and artificial sounds,
such as rock and electronic music, their frequency hardly exceeds
15 KHz. Therefore they do not affect AAMouse, which uses higher
than 17 KHz frequency band. This is also consistent with the find-
ings reported in Spartacus [39], which uses inaudible sound for de-
vice pairing.

Target pointing evaluation: To evaluate the usability of AAMouse
as a pointing device, we measure the distance that the pointer trav-
els in order to touch a specific target. The main purpose of this
experiment is to evaluate how easily one can control the pointer.
If the device tracking is inaccurate, the pointer movement will be
erroneous, which will increase the distance traveled. Similarly, if
the tracking mechanism is not intuitive, the pointer might not move
as the user intends, which will also increase the distance. We use
R = Da/Ds to quantify the accuracy, where Da and Ds are the
actual distance traveled and the shortest path distance, respectively.
When the metric is 1, it means that the movement follows the short-
est path and has no tracking error. A larger value indicates a higher
tracking error or harder to use.

We compare AAMouse, gyroscope, and camera-based tracking,
which all succeed in touching the target every time since the users
are required to change the pointer position until the target is reached.
We do not compare with the accelerometer based scheme since its
error is too large: despite significant time and effort users spend,
they still fail to touch the target in over 90% cases.

Figure 15 shows the CDF of R = Da/Ds for the three schemes.
In terms of the median error, camera based tracking and AAMouse
yields almost the same performance (i.e., 1.03 versus 1.05), but
Gyroscope based tracking yields 1.4, considerably higher than the
other two. The performance gap grows even larger in worse cases.
The 80th percentile R for the camera, AAMouse and gyroscope
based tracking are 1.06, 1.17 and 2.98, respectively. In the case
of AAMouse, the pointer travel distance increases mostly due to the
tracking error. When the users try to touch the target, they move
the device towards the direction of the target. If there is tracking
error, the pointer deviates from the direction intended by the user,
which extends the moving distance. As it is shown in Figure 14 and
15, the tracking accuracy of AAMouse is acceptable, so it does not
significantly increase R. On the other hand, the moving distance
of the gyroscope based tracking increases mainly due to unintuitive
use rather than tracking error. According to our observation, the gy-
roscope itself is quite accurate in measuring the amount of rotation.
However, it is not intuitive to users how much they have to rotate
their wrists in order to move the pointers in an intended direction,
which makes them fail to reach the target. In particular, users have
trouble moving a pointer in a diagonal direction, as it requires them
to rotate their wrist in two axes simultaneously. The users have to

make several attempts before finally touching the pointer, which
increases R.

−20 −10 0 10 20
−20

−10

0

10

20

Distance (cm)

D
is

ta
nc

e
(c

m
)

(a) AAMouse.

−20 −10 0 10 20

−20

−10

0

10

20

Distance (cm)

D
is

ta
nc

e
(c

m
)

(b) Camera based tracking.

−20 −10 0 10 20
−20

−10

0

10

20

Distance (cm)

D
is

ta
nc

e
(c

m
)

(c) Gyroscope based tracking.

Figure 16: Trajectory of AAMouse, camera and gyroscope
based tracking while the users are trying to reach the target
point. R of each scheme corresponds to the 80th percentile.

0.5 1 1.5 2
0

0.5

1

Drawing Error (cm)

C
D

F

Camera
AAMouse
Gyroscope

Figure 17: CDF of drawing error.

Figure 16 shows example trajectories when the user is trying
to reach the target under the 80th percentile R. As we can see,

−20 −10 0 10 20

−10

0

10

20

(a) AAMouse

−20 −10 0 10 20

−10

0

10

20

(b) Camera

−20 −10 0 10 20

−10

0

10

20

(c) Gyro

−20 −10 0 10 20

−10

0

10

20

(d) AAMouse

−20 −10 0 10 20

−10

0

10

20

(e) Camera

−20 −10 0 10 20

−10

0

10

20

(f) Gyro

−20 −10 0 10 20
−10

0

10

20

30

(g) AAMouse

−20 −10 0 10 20
−10

0

10

20

30

(h) Camera

−20 −10 0 10 20
−10

0

10

20

30

(i) Gyro

−20 −10 0 10 20
−10

0

10

20

30

(j) AAMouse

−20 −10 0 10 20
−10

0

10

20

30

(k) Camera

−20 −10 0 10 20
−10

0

10

20

30

(l) Gyro

Figure 18: Figures drawn by AAMouse, camera and gyroscope
based tracking. (a),(b),(c), (g), (h), (i) and (d),(e),(f), (j), (k),
(l) correspond to the median and 80th percentile errors of each
scheme, respectively. The units of both the x-axis and y-axis are
centimeters.

AAMouse and camera users spend similar amount of effort to reach
the target, but the gyroscope user spends considerable more efforts
to reach the target.

Drawing evaluation: Another way of evaluating the usability is
to ask a user to draw simple shapes: a triangle, diamond, circle,
and heart. The user follows the boundaries of the shapes shown
on the screen using the pointer controlled by AAMouse, gyroscope,
or camera. Due to the tracking error and imprecise user control,
the user cannot draw perfect shapes. We measure the quality of
the drawings by calculating the distance between the drawn figure
and the original shape. For each point in the figure, we calculate
its distance to the closest point in the original shape, and average
across all points. While this does not perfectly capture the quality
of the drawing, it provides reasonable distinction between well-
drawn and poorly-drawn figures.

Figure 17 shows the CDF of the drawing error. The median
drawing errors for camera, AAMouse and gyroscope based tracking
are 0.39, 0.47, and 0.61 cm, respectively, and the 80th percentile
errors are 0.51, 0.63, and 0.99 cm, respectively. Figure 18 shows

the sample drawings with the corresponding errors. In the inter-
est of space, we omit the results of circle and diamond. The shapes
drawn by AAMouse and camera are similar, and do not significantly
deviate from the original shapes, whereas the figures from the gy-
roscope have visibly larger error. In case of larger drawing error
shown in Figure 18 (d),(e),(f), (j), (k) and (l), the quality differ-
ence is even more significant. With the camera, the user is able to
draw close to the original shape. The figure from AAMouse is less
accurate, but still follows the original shape. On the other hand,
the gyroscope based figure contains significant errors, and hardly
resembles the original shape.

0 2 4 6 8 10
0

0.5

1

Trajectory Error (cm)

C
D

F

90cm
40cm
20cm
10cm

Figure 19: CDF of trajectory error as the speaker distance
varies.

Impact of the speaker distance: Next we evaluate the impact of
the speaker distance on the accuracy of AAMouse. In Section 3.3,
we explain that we track the position by finding the intersection of
two circles whose radii are the distances from the speakers. As the
distance between the speakers gets closer, the overlap between the
two circles increases, which causes a small distance error to result
in a larger tracking error. Figure 19 shows the CDF of AAMouse
trajectory error as we vary the distance between speakers from 10,
20, 40, to 90 cm while keeping the distance between the speakers
and mobile device to be around 2 m. Reducing the spacing to 40
cm slightly decreases the accuracy. Reducing the spacing to 20 cm
increases the median error from 1.4 cm to 2 cm, which is still ac-
ceptable. However, the error under 10 cm spacing is significant.
These results suggest when the mobile device is around 2 m from
the speakers, AAMouse requires at least 20 cm separation between
the two speakers to achieve high accuracy. All smart TVs and most
laptops have more than 20 cm distance between speakers, and can
support AAMouse well. For example, even a small 13-inch lap-
top like Apple 13-inch MacBook Pro is 32 cm wide, and its two
speakers are at the left and right ends and separated by around 32
cm [23].

2 4 6 8 10
0

0.5

1

Trajectory Error (cm)

C
D

F

2M
3M
4M
4M − 1.2M speaker spacing

Figure 20: CDF of trajectory error as the distances between the
speakers and the microphone varies.

Range experiment: Figure 20 shows CDF of the trajectory as we
vary the distances between the speaker and the microphone. It
shows the accuracy degradation is negligible when we increase the
distance from 2 m to 3 m. When the distance increases to 4 m,
the degradation increases. The degradation is due to weaker sound
signals, and more importantly, reduced relative distance between
the speakers versus the distance from the speaker to the mobile de-
vice. If the distance from the speaker to the microphone increases
while the speaker spacing remains the same, the circles from two
speakers have larger overlap, which produces a higher tracking er-
ror as we see in Figure 19. To confirm this, we extend the speaker
spacing from 90 cm to 120 cm. The result shows that increasing
the speakers’ distance avoids accuracy degradation, and the error is
similar to that in 2 m case. As bigger TVs are getting more pop-
ular, AAMouse can achieve high accuracy beyond 4 m range. For
example, TVs bigger than 60-inch are widely available in market.
The distance between the two speakers on such TVs is larger than
130 cm, and can easily support accurate tracking beyond 4 m.

2 4 6 8 10
0

0.5

1

Trajectory Error (cm)

C
D

F

Audio
RF Phase + Audio

Figure 21: CDF of trajectory error while RF phase is used for
tracking as well as Doppler.

Using RF signal phase: We evaluate the tracking accuracy when
RF signal phase is used for tracking along with the Doppler shift
estimation from one speaker. We use a USRP node with an antenna
to replace a right speaker, and keep the distance between the left
speaker and the USRP transmitter at 90 cm. While our implementa-
tion uses USRP to derive distance estimation, it is possible to apply
the approach on the commodity WiFi card [17]. Figure 21 shows
CDF of the trajectory error, and confirms the feasibility of tracking
using the Doppler shift and the phase of RF signal. The median er-
ror increases from 1.4 cm to 2.5 cm because RF phase is more eas-
ily affected by multi-path fading and environmental change such as
human movement. Even while the device is not moving, the phase
may change due to movement of other human bodies (besides hand
movement). In comparison, while the Doppler shift is also affected
by other human body movement, we use the peak frequency and
ignore the other frequency shifts, which enhances its robustness.

< 4 4−8 8−12 > 12
0

2

4

6

Tracking time (seconds)

T
ra

je
ct

or
y

er
ro

r
(c

m
)

Figure 22: Trajectory error with different tracking time.

Impact of the tracking error accumulation: AAMouse tracks
the device by estimating the movement from the previous position
based on the velocity derived from Doppler shift. The estimation
error of the previous position will increase the estimation error of
the next position. Therefore, the error tends to increase over time.
To evaluate the impact of tracking time on the accuracy, we classify
the traces according to the tracking time. In our user study data, the
tracking time of each individual experiment depends on the user
and the tracking goal (i.e., pointing or drawing), and the minimum,
maximum, and mean tracking times are 1.8, 13.5, and 4.9 seconds,
respectively. Figure 22 shows the mean tracking error for four dif-
ferent ranges of tracking time. As we can see, longer tracking time
leads to larger tracking error. When the tracking time is between 8
and 12 seconds, the mean error is 2.9 cm; but when tracking time
is longer than 12 seconds, the error increases to 4.5 cm. This sug-
gests that AAMouse is most effective for short-term tracking (e.g.,
less than 10 seconds). To support short-term tracking, a user can
initiate tracking using a simple gesture or tapping the screen.

Even for longer-term tracking, users are generally not sensitive
to the position error slowly accumulated over time. This is espe-
cially so for drawing applications, where users are mainly inter-
ested in whether the pointer is moving in the way as they intend,
and the error in absolute device position is not obvious to the user.
To demonstrate it, we ask a user to repeatedly draw circles using
AAMouse and track it over 25 seconds. Figure 23 shows the cir-
cles drawn by AAMouse (black) as well as the ground-truth device
movement (green) at the beginning of the tracking and after 20 sec-
onds, where the trajectory errors are 1.2 and 7.9 cm, respectively.
As shown in Figure 23 (b), after 20 seconds, the absolute position
error increases due to error accumulation, but the shape is still pre-
served.

(a) In the beginning. (b) After 20 seconds.

Figure 23: Compare the circles drawn by AAMouse (black) and
the ground-truth (green).

0 5 10 15 20

−0.5

0

0.5

1

Time (seconds)

V
el

oc
ity

 (
m

/s
)

AAMouse
Video
Accelerometer

Figure 24: Velocity while moving the device backward and for-
ward.

From our experience, we find the user is mainly concerned about
instantaneous tracking error because it moves the pointer differ-
ently from what the user intends. This can happen in accelerometer
based tracking due to double integration of the acceleration, which
causes speed estimation error. In comparison, AAMouse estimates
the velocity using the measured Doppler shift every time, so the
error of speed estimation does not accumulate over time. To con-
firm the intuition, we perform the following experiment, where we
repeatedly move the mobile device back and forth, and measure
the velocity using AAMouse, camera, and accelerometer. As shown
in Figure 24, the error is accumulated with the accelerometer: the
difference between accelerometer and video based velocity estima-
tion increases over time. In comparison, the difference between the
video and Doppler based velocity estimation is small and remains
constant over time.

0 10 20 30
0

1

2

3

4

5

Vertical movement of the device (cm)

T
ra

ck
in

g
er

ro
r

(c
m

)
Figure 25: Tracking error as the device is moving vertically.

Impact of vertical movements: So far, we focus on tracking in a
2-D space by using either 2 speakers or one speaker and one wire-
less device as anchors. Using more anchors allows us to track in a
3-D space. If we are limited to two anchors, we can track the de-
vice movement in the horizontal plane (assuming the speakers are
placed horizontally next to each other); and vertical movement can-
not be tracked. To understand the impact how vertical movements
affect the tracking accuracy, we vertically move the device while
fixing its position in the horizontal plane. Since the device does
not have horizontal movement, any movement tracked is an error.
Figure 25 shows the tracking error when we vertically move the de-
vice up to 30 cm. We repeat 30 times, and get the average tracking
distance of AAMouse. Like the other experiments, the distance be-
tween 2 speakers is 0.9 m and the distance between the speaker and
the device is approximately 2 m. The result shows that the track-
ing error generated by 30 cm vertical movement is less than 5 cm.
With the Doppler shift measurement, AAMouse tracks the device
by observing the change in the distance between the two speakers
and the device. Given the distance between the speaker and the de-
vice, the distance change by the vertical movement is much smaller
than that by the horizontal movement. Moreover, as a mouse appli-
cation, a user is typically aware that vertical movement may incur
tracking error and avoids large vertical movement. If they limit
their vertical movement to 10 cm, the tracking error reduces to 1.7
cm. Therefore, the error introduced by vertical movement is likely
to be small.

6. RELATED WORK
Localization and device tracking: Localization has received sig-
nificant research attention over the last few decades. However, most
of the previous works achieve coarse grained localization, and do
not satisfy our goal of achieving centimeter-level accuracy. There
are a few ranging-based localization papers that use acoustic sig-
nals to estimate the distance based on time-of-arrival (e.g., [29, 48,

31]). Different from these ranging based works, we focus on con-
tinuous trajectory tracking to enable mouse functionalities. [38]
uses 6 beacon nodes as transmitters to achieve a median error of 12
cm under the line-of-sight. To achieve such an accuracy, it requires
special hardware, dense deployment, and line-of-sight, which may
not be feasible in many cases. Another fine grained indoor lo-
calizations is ArrayTrack [45], but its median error is still 23 cm.
Recently, there have been a few works that track the trajectory of
RFID tags in centimeter-level [40, 41, 46]. They require special
RFID readers with many antennas. RF-IDraw [41] uses two RFID
readers, each with 4 antennas, and Tagoram [46] uses four readers,
each equipped with 4 antennas. In home environment, it is difficult
to imagine that people deploy RFID readers to track their devices.
We achieve comparable accuracy by exploiting two speakers that
are available in most TVs, PCs, and laptops. Moreover, although
Tagoram achieves millimeter-level accuracy when the target moves
along a known track, in an unknown track their median error is 12
cm, well above our error (i.e., 1.4 cm).

Using inertial sensors: [22] uses the acceleration measured from
the accelerometer of the smart phone for localization. Due to sig-
nificant error from the acceleration measurement, it uses dead reck-
oning approach that finds the position by estimating the number
of steps and the heading direction instead of double integration.
Zee [33] uses a similar approach to fill in the gap between the loca-
tions estimated using WiFi. Both of them achieve sub-meter level
accuracy. Such an approach is suitable for tracking walking, but
not hand movement, which is our focus.

Inertial sensors are also used for gesture recognition and device
tracking [28, 4]. E-gesture [28] uses gyroscope and accelerometer
for gesture recognition, but it is not applicable to device tracking.
[4] tracks the device movement and recognizes the alphabet the
user writes. Their tracking algorithm is similar to the acceleration
based tracking used as a baseline comparison in Section 5. Our
evaluation result shows that AAMouse achieves much higher accu-
racy than the accelerometer based tracking.

Using Doppler for motion and device tracking: WiSee [30] is a
novel method for device-free gesture recognition using the Doppler
shift of the WiFi RF signal. Its main benefit is that users do not need
to carry any device. Its focus is gesture recognition, which distin-
guishes one gesture from another, instead of estimating the exact
position, so it is not sufficient for our purpose. A few other works
[12, 8, 6, 39] use the Doppler shift of the audio signal for gesture
recognition rather than device tracking. DopLink [6] enables the
interaction among devices using the Doppler shift, and Spartacus
[39] finds the direction of the device movement using the Doppler
shift and pairs it with another device that moves in the same di-
rection. Swadloon [14] exploits the Doppler shift of audio signal
for fine-grained indoor localization. It assumes the position of the
anchor nodes (i.e., speakers) are known, and its error is around 50
cm, well below our accuracy requirement. [19] proposes acoustic
signal based localization, but it uses chirp ranging instead of the
Doppler effect. Its localization accuracy is close to 1 m, and its
tracking accuracy during device movement has not been evaluated.

Infrastructure based tracking: Microsoft X-box Kinect [1] and
Nintendo Wii [2] have been widely successful as gaming controllers.
They augment the game reality by using motion tracking and ges-
ture recognition. Kinect recognizes the gesture of the user using
the depth sensing camera. Wii uses Infrared (IR) signal to track
the movement of the controller. The sensor bar on the top of TV
emits IR signal and the IR camera attached to the Wii controller
determines its position relative to the sensor bar by detecting the
change in IR blobs [43]. Different from these devices, our approach

enables mouse functionalities using the speakers and microphones
that are already available in most TV and mobile devices and does
not require line-of-sight.

Gyroscope based Air mouse: One of our main applications is to
let a user point at a specific target using a mobile device as a mouse.
There have been a few types of Air mice [5] in the market. These are
usually used as remote controllers for laptops and PCs. Advanced
remote controllers for smart TVs, such as Roku 3 [34], Samsung
Smart Remote [35], and LG magic motion controller [21], provide
similar functionality. They all use gyroscopes, which measure the
angular velocity to track motion, where a user rotates his wrist to
control the pointer position in a 2-D space. Rotating the device
yields the change of the angular velocity, which is translated into
the pointer movement. Such a movement is not intuitive to users.
We performed user study to compare gyroscope based device con-
trol with our scheme. As shown in Section 5, users traverse 40%
more distance to touch a target. When asked to draw simple shapes
using the gyroscope, the outputs are rather different from the orig-
inal shapes.

7. CONCLUSION
In this paper, we develop a novel system that can accurately track

hand movement and apply it to realize a mouse. A unique ad-
vantage of our scheme is that it achieves high tracking accuracy
(e.g., median error of around 1.4 cm) using the existing hardware
already available in the mobile devices and equipment to be con-
trolled (e.g., smart TVs). Our evaluation and user study demon-
strate the feasibility and effectiveness of our approach. Moving
forward, we are interested in further enhancing the accuracy and
robustness of tracking. Moreover, we would like to conduct larger-
scale user study and develop interesting applications that benefit
from accurate tracking.

Acknowledgements
We are grateful to Shyam Gollakota and anonymous reviewers’ in-
sightful comments.

8. REFERENCES
[1] Microsoft X-box Kinect. http://xbox.com.
[2] Nintendo Wii. http://www.nintendo.com/wii.
[3] Circle-circle intersection.

http://mathworld.wolfram.com/Circle-
CircleIntersection.html.

[4] S. Agrawal, I. Constandache, S. Gaonkar, R. Roy Choudhury,
K. Caves, and F. DeRuyter. Using mobile phones to write in
air. In Proc. of ACM MobiSys, pages 15–28, 2011.

[5] Logitech air mouse. http://www.logitech.com.
[6] M. T. I. Aumi, S. Gupta, M. Goel, E. Larson, and S. Patel.

Doplink: Using the doppler effect for multi-device
interaction. In Proc. of ACM UbiComp, pages 583–586,
2013.

[7] G. Bradski. The OpenCV library. Doctor Dobbs Journal,
25(11):120–126, 2000.

[8] K.-Y. Chen, D. Ashbrook, M. Goel, S.-H. Lee, and S. Patel.
Airlink: Sharing files between multiple devices using in-air
gestures. In Proc. of ACM Ubicomp, 2014.

[9] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo
localization for mobile robots. In Proc. of Robotics and
Automation, volume 2, pages 1322–1328, 1999.

[10] Frame rate.
http://en.wikipedia.org/wiki/Frame_rate.

[11] D. Goehl and D. Sachs. Motion sensors gaining inertia with
popular consumer electronics. White Paper, IvenSense Inc,
2007.

[12] S. Gupta, D. Morris, S. Patel, and D. Tan. Soundwave: using
the doppler effect to sense gestures. In Proc. of the SIGCHI,
pages 1911–1914, 2012.

[13] R. Heydon and N. Hunn. Bluetooth low energy. CSR
Presentation, Bluetooth SIG https://www. bluetooth.
org/DocMan/handlers/DownloadDoc. ashx, 2012.

[14] W. Huang, Y. Xiong, X.-Y. Li, H. Lin, X. Mao, P. Yang, and
Y. Liu. Shake and walk: Acoustic direction finding and
fine-grained indoor localization using smartphones. In Proc.
of IEEE INFOCOM, 2014.

[15] InvenSense. http://www.invensense.com.
[16] E. Jacobsen and R. Lyons. The sliding DFT. IEEE Signal

Processing Magazine, 20(2):74–80, 2003.
[17] S. Kumar, D. Cifuentes, S. Gollakota, and D. Katabi.

Bringing cross-layer MIMO to today’s wireless lans. In In
Proc. of ACM SIGCOMM, August 2013.

[18] S. Kumar, S. Gil, D. Katabi, and D. Rus. Accurate indoor
localization with zero start-up cost. In Proc. of ACM
MobiCom, pages 483–494, 2014.

[19] P. Lazik and A. Rowe. Indoor pseudo-ranging of mobile
devices using ultrasonic chirps. In Proc. of ACM SenSys,
pages 99–112, 2012.

[20] C.-H. Lee, J.-L. Shih, K.-M. Yu, and H.-S. Lin. Automatic
music genre classification based on modulation spectral
analysis of spectral and cepstral features. IEEE Transactions
on Multimedia, 11(4):670–682, 2009.

[21] LG magic motion remote. http://www.lg.com/us/tv-
accessories/lg-AN-MR200-motion-remote.

[22] F. Li, C. Zhao, G. Ding, J. Gong, C. Liu, and F. Zhao. A
reliable and accurate indoor localization method using phone
inertial sensors. In Proc. of UbiComp, pages 421–430, 2012.

[23] Apple 13-inch MacBook Pro technical specifications.
https://www.apple.com/macbook-pro/specs/.

[24] R. A. Meyers. Encyclopedia of physical science and
technology. Facts on File, 1987.

[25] Top EDM 2014 music playlist tracklist. https:
//www.youtube.com/watch?v=PHIRcu3Ero0.

[26] H. Nyqvist and F. Gustafsson. A high-performance tracking
system based on camera and IMU. In Proc. of 16th IEEE
International Conference on Information Fusion (FUSION),
pages 2065–2072, 2013.

[27] A. V. Oppenheim, R. W. Schafer, J. R. Buck, et al.
Discrete-time signal processing, volume 2. Prentice-hall
Englewood Cliffs, 1989.

[28] T. Park, J. Lee, I. Hwang, C. Yoo, L. Nachman, and J. Song.
E-gesture: a collaborative architecture for energy-efficient
gesture recognition with hand-worn sensor and mobile
devices. In Proc. of ACM SenSys, pages 260–273, 2011.

[29] C. Peng, G. Shen, Y. Zhang, Y. Li, and K. Tan. BeepBeep: a
high accuracy acoustic ranging system using COTS mobile
devices. In Proc. of ACM SenSys, 2007.

[30] Q. Pu, S. Gupta, S. Gollakota, and S. Patel. Whole-home
gesture recognition using wireless signals. In Proc. of ACM
MobiCom, 2013.

[31] J. Qiu, D. Chu, X. Meng, and T. Moscibroda. On the
feasibility of real-time phone-to-phone 3D localization. In
Proc. of ACM MobiSys, 2011.

[32] H. S. Rahul, S. Kumar, and D. Katabi. MegaMIMO: scaling
wireless capacity with user demands. In Proc. of ACM
SIGCOMM, pages 235–246, 2012.

[33] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen.
Zee: zero-effort crowdsourcing for indoor localization. In
Proc. of ACM MobiCom, 2012.

[34] Roku 3 streaming player.
https://www.roku.com/products/roku-3.

[35] CES 2014: Samsung shows off new gyroscopic remote
control. http:
//www.digitalversus.com/tv-television/
ces-2014-samsung-shows-off-new-
gyroscopic-remote-control-n32491.html.

[36] K. Seifert and O. Camacho. Implementing positioning
algorithms using accelerometers. Freescale Semiconductor,
2007.

[37] CES 2014 trends: New remotes and interfaces to make smart
TVs actually usable. http:
//spectrum.ieee.org/tech-talk/consumer-
electronics/audiovideo/ces-2014-trends-
getting-smart-tv-under-control.

[38] A. Smith, H. Balakrishnan, M. Goraczko, and N. Priyantha.
Tracking moving devices with the cricket location system. In
Proc. of ACM MobiSys, 2005.

[39] Z. Sun, A. Purohit, R. Bose, and P. Zhang. Spartacus:
spatially-aware interaction for mobile devices through
energy-efficient audio sensing. In Proc. of ACM Mobisys,
pages 263–276, 2013.

[40] J. Wang and D. Katabi. Dude, where’s my card? RFID
positioning that works with multipath and non-line of sight.
In Proc. of the ACM SIGCOMM, pages 51–62, 2013.

[41] J. Wang, D. Vasisht, and D. Katabi. RF-IDraw: virtual touch
screen in the air using rf signals. In Proc. of ACM
SIGCOMM, 2014.

[42] P. D. Welch. The use of fast fourier transform for the
estimation of power spectra: a method based on time
averaging over short, modified periodograms. IEEE
Transactions on audio and electroacoustics, 15(2):70–73,
1967.

[43] C. A. Wingrave, B. Williamson, P. D. Varcholik, J. Rose,
A. Miller, E. Charbonneau, J. Bott, and J. LaViola. The
wiimote and beyond: Spatially convenient devices for 3d
user interfaces. IEEE Computer Graphics and Applications,
30(2):71–85, 2010.

[44] G. Woo, P. Kheradpour, D. Shen, and D. Katabi. Beyond the
bits: Cooperative packet recovery using physical layer
information. In Proc. of ACM MobiCom, 2007.

[45] J. Xiong and K. Jamieson. Arraytrack: A fine-grained indoor
location system. In Proc. of NSDI, pages 71–84, 2013.

[46] L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu.
Tagoram: Real-time tracking of mobile RFID tags to high
precision using cots devices. In Proc. of ACM MobiCom,
2014.

[47] S. Yun, L. Qiu, and A. Bhartia. Multi-point to multi-point
MIMO in wireless LANs. In Proc. of INFOCOM
Mini-Conference, April 2013.

[48] Z. Zhang, D. Chu, X. Chen, and T. Moscibroda. Swordfight:
Enabling a new class of phone-to-phone action games on
commodity phones. In Proc. of ACM MobiSys, 2012.

