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ABSTRACT

With the explosion of smartphones and social network ser-
vices, location-based social networks (LBSNs) are increas-
ingly seen as tools for businesses (e.g., restaurants, hotels)
to promote their products and services. In this paper, we
investigate the key techniques that can help businesses pro-
mote their locations by advertising wisely through the un-
derlying LBSNs. In order to maximize the benefit of loca-
tion promotion, we formalize it as an influence maximiza-
tion problem in an LBSN, i.e., given a target location and
an LBSN, which a set of k users (called seeds) should be ad-
vertised initially such that they can successfully propagate
and attract most other users to visit the target location.
Existing studies have proposed different ways to calculate
the information propagation probability, that is how likely
a user may influence another, in the settings of static social
network. However, it is more challenging to derive the prop-
agation probability in an LBSN since it is heavily affected
by the target location and the user mobility, both of which
are dynamic and query dependent. This paper proposes two
user mobility models, namely Gaussian-based and distance-
based mobility models, to capture the check-in behavior of
individual LBSN user, based on which location-aware prop-
agation probabilities can be derived respectively. Extensive
experiments based on two real LBSN datasets have demon-
strated the superior effectiveness of our proposals than exist-
ing static models of propagation probabilities to truly reflect
the information propagation in LBSNs.
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1. INTRODUCTION
Due to the success of viral marketing, more and more

advertisements appear in social networks. The key to the
success of viral marketing is the influence among social con-
nections. Users are more likely to accept the advertisements
from their friends in social networks than from media di-
rectly. By observing this phenomenon, prior works have
elaborated on the influence maximization problem in social
networks. In general, a social network is modeled as a graph
G = (U,E), where U is the set of users, E refers to the social
connections among users, and the weight of edges infers the
influence degree between users. Given a graph, the influence
maximization problem is to select a set of users as seeds with
the purpose of maximizing the number of influenced users
(i.e., influence spreads) in a social network.

With the popularity of smart phones and location-based
social networks (LBSNs), users are able to check-in at some
locations and share their check-in records with their friends.
In view of the social influences of friends, recently, many
POIs (e.g., restaurants, stores) have explored check-in shar-
ing to attract users to stay or visit. We mention in pass-
ing that the prior work in [16] formulated a location-aware
influence maximization problem in which, given a query re-
gion and the location of users, a set of seed users is deter-
mined with the purpose of maximizing influence spreads in
the query range. In reality, locations in social media are
referred to as POIs which could be restaurants, hotels or
theme parks. From the perspective of POIs, each would like
to attract users to visit, and via the check-in records of users,
more users (e.g., friends of check-in users) will be influenced
and then visit this POI. Thus, we formulate this problem
as a location promotion problem in which given one target
location and the number of seeds, the purpose is to maxi-
mize the number of influenced users. Note that the location
promotion problem is different from the prior work [16] in
that a target location is specified.

Intuitively, the location promotion problem can be mod-
eled as an influence maximization problem in LBSNs. Ex-
plicitly, given a set of nodes and edges with the propagation
probability, a target location and the number of seeds, a set
of seed users is derived to maximize the number of influenced
users. Notice that one challenging issue behind the location
promotion problem is to determine the propagation proba-
bilities of edges. By investigating the information of LBSNs
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Figure 1: An example of dynamic propagation probability when the target location is changed in an LBSN

(i.e., check-in locations of users and social connections of
users), we thus propose some static propagation probabili-
ties. A success influence in LBSNs is that users should follow
their friends to check-in at the target location specified. To
achieve this, we claim that user mobility should be consid-
ered. If a user never appears in the nearby area of the target
location, this user is not likely to visit the target location
at all. Figure 1 shows an example of dynamic propagation
probabilities in an LBSN. If the target location (the red lo-
cation) is on the left side (e.g., US west in Figure 1(a)), users
on the left side have more chance to visit it since the tar-
get location is near their check-in records. The propagation
probabilities of edges among users in the left side are higher
(bold social connections) than the propagation probabilities
of edges among users on the right side. On the other hand, if
the target location on the right side (e.g., US east in Figure
1(b)), the edges of users on the right side have larger propa-
gation probabilities. Therefore, we consider a user mobility
model for the propagation probability to truly reflect the
propagation of information on social connections. If the tar-
get location is changed, the propagation probability should
be updated.

From the above example, one should consider the mo-
bility model for the location promotion problem. To the
best of our knowledge, there are some mobility models to
describe users’ check-in behavior in LBSNs [5][6][17]. The
mobility models proposed [5][6][17] are all based on the bi-
variate Gaussian distribution. However, it is hard to decide
the area around the target location to evaluate the proba-
bility of a user visiting the target location from Gaussian-
based mobility models, which are based on two-dimensional
density functions. Moreover, the Gaussian-based mobility
models only describe the coordinates of check-in records but
do not consider their order. We argue that different or-
ders of check-in records represent different check-in behav-
ior. Therefore, we propose distance-based mobility models
to represent individual check-in behavior in LBSNs. We
exploit the distance between consequent check-in records to
model individual check-in behavior, where the distances rep-
resent individual movement preferences. Moreover, it is easy
to evaluate the probability of user check-in at the target lo-
cation. Thus, our proposed distance-based mobility models
are suitable not only to describe individual check-in behavior
but also to determine the propagation probability of edges.

In summary, our major contributions are outlined as fol-
lows:

• We formulate the location promotion problem in an
LBSN as an influence maximization problem in a graph.

• By investigating the check-in records of users and the
social connections of users, we propose some approaches
to derive static propagation probability in LBSNs.

• We take the target location and users’ check-in records
into consideration, and propose two types of mobility
model, Gaussian-based mobility models and distance-
based mobility models, to evaluate location-aware prop-
agation probability in LBSNs.

• Gaussian-based mobility models and distance-based mo-
bility models consider the spatial, temporal and social
features hidden in LBSNs.

• We have conducted comprehensive experiments on two
real datasets, and the experimental results show that
the proposed models are suitable for effective influence
maximization in LBSNs.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses related works. Section 3 gives a formal def-
inition of the location promotion problem and the relation
between location promotion and influence maximization in
LBSNs. Section 4 presents how to evaluate the propagation
probabilities in LBSNs. The experimental results are shown
in Section 5. Section 6 concludes this paper.

2. RELATED WORKS
In this paper, our work is related to the influence max-

imization in social networks. Thus, we will present some
existing works of influence maximization in social networks.
Since the main theme of this paper is to derive the propaga-
tion probabilities, we will describe how to set the propaga-
tion probabilities in existing works. Note that as our work is
to explore mobility models from check-in records to set the
propagation probabilities, we present some research works
of modeling user mobility from social media.

2.1 Influence Maximization in Social Networks
The influence maximization problem is to find k users as

seeds which can maximize the influence spreads in a social
network, and this problem is NP-hard [13]. In general, most
works utilize greedy-based algorithms to select the user as
a seed who could maximize the number of influenced users
until k seeds are selected [13][14]. In [15], the authors pro-
pose the CELF algorithm which exploits the submodular
property to significantly boost the traditional greedy ap-
proach. Moreover, another problem is to evaluate the influ-
ence spreads from a seed set. A traditional way is to utilize
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the Monte Carlo approach [13][14]. However, the computa-
tion cost of this approach is expensive since it has to run
about 10,000 times for evaluation [13]. In [4], the authors
proposed a heuristic algorithm, MIA, to estimate the in-
fluence spreads by using the paths to represent the routes
of influence among users. For LBSNs, the authors of [21]
designed a greedy algorithm to select users with a higher
degree and more closely related to the location as seeds in
their one-wave diffusion model for LBSNs. However, the
one-wave diffusion model is not close to real LBSNs. In [16],
the authors target the influence maximization problem in
LBSNs. Explicitly, given a query region and users’ repre-
sentative locations, the output is to derive k seeds with the
purpose of maximizing influence spreads. This work is the
first work for the influence maximization problem in LBSNs.
However, this problem is different from the location promo-
tion problem addressed in this paper. In location promotion,
a specified target location is given. Though the location pro-
motion problem could be solved via the influence maximiza-
tion problem, we explore user mobility to infer propagation
probabilities. These features differentiate our work from ex-
isting influence maximization works.

2.2 Propagation Probability in Social Networks
To detect the propagation probability in a social network,

some existing approaches use the number of in-degrees [13],
a fixed value [10] and a uniformly random value [10]. How-
ever, these approaches are some baseline methods. In social
networks, users’ actions indeed reflect real influences. As
such, some works focus on learning the propagation prob-
ability from action history. In [20], the authors exploited
the EM algorithm to learn the probability from the Inde-
pendent Cascading Model (ICM). In [9], the authors uti-
lized the Bernoulli distribution to model the influence on
each social connection. The probability parameter of the
Bernoulli distribution is learned from data for every social
connection, and each probability parameter is the propaga-
tion probability of the corresponding edge. Moreover, prior
works [1][3][18] noticed that different topics have different
diffusion results since users have different topic preferences.
In LBSNs, this phenomenon is more observable. Users have
their locality such that they would not like to move to a
far location, even if this location is recommended by their
friends. Thus, different target locations have different prop-
agation probabilities.

2.3 Capturing Movement Behavior
A trajectory is a sequence of locations ordered by vis-

iting time so that many works aimed at discovering spatio-
temporal patterns from trajectories [7][8][12]. To capture an
individual user’s check-in behavior, we have to deal with the
spatio and temporal sparsity. In [19], the authors discovered
spatio-temporal patterns from all users’ check-in records in
Foursquare. In [22], the authors showed that the major rea-
son of check-in is based on their mobility, and the chance
of social influence is very low. In [5], the authors had sim-
ilar perspectives on weak social influence in LBSNs. The
authors proposed PSMM which divides each user’s check-
ins into three types: work, home and social. The check-in
records of each type are modeled by a bivariate Gaussian
distribution. Moreover, to distinguish the home and work
states of check-in records, they also select the Gaussian dis-
tribution to classify the time of check-in records. In [6], there

are two factors considered for users’ check-in behaviors, per-
sonal preference and social influence. Personal preference is
modeled by a bivariate Gaussian distribution, and the social
influence is from the similarity between the user’s check-in
records and their friends’ check-in records. In [17], the au-
thors exploit kernel density estimation (KDE) to model the
individual user’s check-in records. They provide how to set
the parameters of KDE for each user from their check-in
records. The KDE approach is Gaussian-based since it is
a mixture model consisting of bivariate Gaussian distribu-
tions. In our work, it is hard for the models to evaluate
the probability of a location since we have to decide on an
area to compute the probability (the probability of a point
in a two-dimensional distribution is 0). Therefore, we use
the distance-based approach to model each user’s check-in
behavior.

3. PRELIMINARIES

3.1 Influence Maximization in LBSNs
In this section, we will give a formal definition of the lo-

cation promotion problem in an LBSN. First, the formal
definition of an LBSN is as follows:

Definition 1. (LBSN) An LBSN ⟨G,C⟩ consists of a so-
cial network G = ⟨U,E⟩, where U is the set of users, E =
{(ui, uj)| a social connection from ui to uj , ui, uj ∈ U, ui ̸=
uj} and the set of check-in records C = {(u, ℓ, t)}, where
(u, ℓ, t) represents a check-in record where a user u checks
in at location ℓ at time t, and ℓ ∈ L. A location ℓ is a
coordinate which consists of latitude and longitude.

Then, the formal definition of the location promotion prob-
lem on an LBSN is as follows:

Definition 2. (Location Promotion Problem) Given an LBSN
⟨G,C⟩, a target location ℓ and a constant k, the location pro-
motion problem is to select a set of seeds S, S ∈ U , which
has k seeds (to distinguish from other users) to maximize
the number of expected influenced users σ(S) who will visit
the target location ℓ.

3.2 Framework
Figure 2 shows the framework of location promotion in

an LBSN. In the first step, given a target location, we de-
termine the propagation probability of edges in the social

social graph detect propagation probability

0.1
0.2

0.1
0.4

0.3
0.4

the target location seeds

influence maximization

check-in records

Figure 2: The framework for location promotion
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graph based on check-in records. In this step, the input of
location promotion in an LBSN is transformed to the input
of influence maximization on a graph. Based on the social
graph and propagation probability of edges from the first
step, one could derive the seed set via existing solutions of
influence maximization [4] and [15]. One challenging issue is
how to set the propagation probability on social connections
to truly reflect the propagation of information in an LBSN.
The following sections will present how to derive propagation
probability of influences among users in the social graph.

4. PROPAGATION PROBABILITIES IN LB-
SNS

In this section, we will propose some methods to derive
propagation probability in an LBSN. First, we borrow the
concept of prior works in [2][4][9][10][13] and then derive
some baselines to determine the propagation probability.
Note that in the location promotion problem, the given tar-
get location has an impact on the propagation probabilities.
Thus, we explore the mobility models to derive the propa-
gation probability in Section 4.2.

4.1 Static Propagation Probabilities
In this part, we will show the traditional approaches for

determining the propagation probability on edges in social
networks. By referring to prior works [2][4][9][10][13], we
have seven approaches to derive the propagation probability
pu→v of edge (u, v) that is formulated as follows:

Uniform probability: All edges are assigned to the
same probability [10].

pu→v = 0.01

Trivalency: All edges are assigned to the probability se-
lected from {0.1, 0.01, 0.001} uniformly [4].

In-degree of nodes: The propagation probability from
u to v is the in-degree of v [13].

pu→v =
1

deg(v)

where deg(v) denotes the in-degree of v. The propagation
probability is higher if the in-degree of v is lower.

Jaccard index of friends: The Jaccard index is used to
measure the similarity between two sets. Here, we select the
Jaccard index to measure the similarity between two users’
friendships as the propagation probability if the edge (u, v)
exists [9].

pu→v =
|adj(u) ∩ adj(v)|
|adj(u) ∪ adj(v)|

where adj(u) denotes the set of u’s friends. The propagation
probability is higher if most friends of u and v are the same.

Jaccard index of locations: For LBSNs, we selected
the Jaccard index of locations from two users’ check-ins as
the propagation probability if the edge (u, v) exists [2].

pu→v =
|loc(u) ∩ loc(v)|
|loc(u) ∪ loc(v)|

where loc(u) denotes the set of u’s visited locations. The
propagation probability is higher if most visited locations of
u and v are the same.

Cosine of locations: To consider the check-in times of
locations, we convert the user’s check-in records as a vector,

in which the dimensions are locations and the values of each
dimension are the check-in times of this location. Thus, we
can measure the similarity via cosine from two users’ check-
in records.

pu→v =

∑

ℓ∈loc(u)∩loc(v)#
L
u (ℓ) ·#L

v (ℓ)
√

∑

ℓ∈loc(u) #
L
u (ℓ)2

√

∑

ℓ∈loc(v)#
L
v (ℓ)2

where #L
u (ℓ) denotes the number of times u visited ℓ. The

propagation probability is higher if not only most visited
locations of u and v are the same, but also the if check-in
times of the visited locations are similar.

Bernoulli distribution: Given two check-in records of
two users connected by a social connection, we can calcu-
late the times of influence. For each check-in, we can know
whether another user has checked-in at the same location
after the check-in. If yes, then the influence is success; oth-
erwise, it is failure. The probability of successful influence
is from the Bernoulli distribution. To find the success prob-
ability in Bernoulli distribution from the records, the result
from the maximum likelihood estimator is as follows [9].

pu→v =
#I

u(v)
# of attempts from u

where #I
u(v) denotes the times of successful influence from

u to v. The propagation probability is higher if the success
chance of influence attempt from u to v is higher.

4.2 Location-aware Propagation Probabilities
In LBSNs, the information propagation is different from

in traditional social networks since users have to perform
check-in at the target location to spread the information.
Figure 3 shows an example of information propagation in
an LBSN. u1 is active such that u1’s friend u2 will receive
the information of the target location from u1’s check-in
sharing. From the perspective of influence maximization,
the propagation probability of the edge from u1 to u2 is
the probability of activating u2 from u1 [13]. Thus, in LB-
SNs, this probability is the probability of u2 checks-in at
the target location. If u2 does, the information of the tar-
get location will propagate to u2’s friend, u3. In Figure 3,
u2 and u3 have 70% and 60% to check-in at the target lo-
cation, respectively. Thus, the propagation probabilities of
the edge (u1, u2) and (u2, u3) are 0.7 and 0.6, respectively.
Clearly, if the target location is changed, the probabilities
will be changed. To infer whether each user will checks-in
at the target location, we explore the mobility model in an

propagation prob.

check-in at the target location
information propagation

social connection

u3u3u2u2u1u1

active

prob. of check-in at the pointed location
the target location

u3u3u2u2u1u1

active active

0.7 0.6

0.7

0.6

Figure 3: An example of information propagation in
an LBSN
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(b) GMM-Spatial

State 1
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Figure 4: Examples of Gaussian-based mobility models

LBSN to infer the propagation probability in LBSNs. There
are two kinds of mobility model proposed: one is Gaussian-
based models and the other is distance-based models. Based
on these two models, we further derive the corresponding
probability functions.

4.2.1 Gaussian-based Mobility Models
Prior works [5][6] utilize the Gaussian-based mobility mod-

els to model individual users’ check-in behavior in LBSNs.
However, in prior works [5][6], the mobility model is tempo-
ral related. In our work, we do not care about the probabil-
ity of a location at a specific time since we just care about
whether each user visits the target location or not. Thus, we
show three major types of Gaussian-based mobility model
based on existing works [5][6].

Gaussian-based mobility model (denoted as GMM-
Basic): This is the basic form of Gaussian-based mobility
model. Each user is modeled by one bivariate Gaussian dis-
tribution. Given the check-in records {(u,ℓ = (x, y), t)} of
user u, the u’s mobility model is as follows:

p(ℓ) =
1

2π
√

|Σ|
exp

(

−1
2
(ℓ− µ)TΣ−1(ℓ− µ)

)

(1)

and the parameters of p(ℓ) can be estimated by the following
equations: n = |{(u,ℓ = (x, y), t)}|, µ̂ = 1

n

∑

[x, y] and

Σ̂ = 1
n

∑

([x, y]− µ̂)T ([x, y]− µ̂).
Figure 4(a) shows an example of GMM-Basic. Only one

Gaussian distribution represents each user’s check-in behav-
ior. On the left side, GMM-Basic has higher probability den-
sity, but there is no check-in record there. Thus, only one
Gaussian distribution could not describe each user’s check-in
behavior well.

Gaussian-based mixture mobility model based on
spatial information (denoted as GMM-Spatial): Each
user’s check-in records can be divided into several states, and
each state can be modeled by one Gaussian distribution.
Given the check-in records {(u,ℓ = (x, y), t)} of user u, u’s
mobility model is as follows:

p(ℓ) =
K
∑

i=1

p(ℓ|Zi)p(Zi) (2)

where K is the number of states, p(ℓ|Zi) denotes the prob-
ability density of ℓ in the state Zi, and p(Zi) denotes the

 0
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Figure 5: Histogram of the check-in timestamp of a
user in a day. The states correspond to Figure 4(c)

probability of state Zi. p(Zi) and the parameters of p(ℓ|Zi)
can be learned by the EM algorithm.

As presented in [5], K is set to 2 and these states represent
the home and work states. Figure 4(b) shows an example
of GMM-Spatial with two states. The user has 75 check-in
records in the area with latitude between 30.3N and 30.6N,
and longitude between 97.9W and 97.7W. Note that the x-
axis is longitude and the y-axis is latitude. Two Gaussian
distributions are used to represent each user’s check-in be-
havior with two different states. Obviously, GMM-Spatial is
better than GMM-Basic for describing each user’s check-in
behavior. However, each state could not be well represented
by one Gaussian distribution such as state 2 in Figure 4(b).

Gaussian-based mixture mobility model based on
temporal information (denoted as GMM-Temporal):
Since users may have different states of check-in behavior at
different time, wrapped Gaussian distribution1 is selected
to describe the work state and home state on the timeline
[5]. Given the check-in records {(u,ℓ = (x, y), t)} of user u,
u’s mobility model is the same as GMM-Spatial (Equation
2) and is also learned via the EM algorithm. However, in
the E-step of the EM algorithm, the check-in records are
classified by the Bayesian classifier on the timeline in one

1In [5], the authors selected the truncated Gaussian distri-
bution for the time distribution. However, the time of a
day is circular. Thus, the wrapped Gaussian distribution
is better than truncated Gaussian distribution for the time
distribution here.
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Figure 6: An example of calculating the propagation
probability in GMMs

day. The PDF of a time t of each state is as follows:

p(t|Zi) =
1

σi

√
2π

∞
∑

k=−∞

exp(
−(t− µi + 2πk)2

2σ2
i

)

where the time t is mapped into [0, 2π).
Figure 4(c) shows an example of GMM-Temporal with two

states, and Figure 5 shows the corresponding check-in time
distribution in a day. The distribution is not obvious to dis-
tinguish into two bivariate Gaussian distributions since the
check-in records are classified by the timestamp but not the
coordinate. Thus, the two bivariate Gaussian distributions
overlap. However, for each type of check-in record, it is also
hard to describe the check-in records completely.

Deriving propagation probability: The Gaussian-based
mobility models are two-dimensional distribution. Thus, it
is necessary to select a region to calculate the probability.
Figure 6 shows an example of calculating the propagation
probability in GMMs, where the target location ℓ, and the
region R around ℓ are controlled by∆ x an∆ y. The proba-
bility of u checking in at ℓ is as follows:

Pu(ℓ) =

∫

R

p(ℓ)dA (3)

where the p(ℓ) is from Equation 1 or 2. The propagation
probability of edge (v, u) is the probability of u checking in
at the target location ℓ. Hence the propagation probability
of the edge from v to u is as follows:

pv→u = Pu(ℓ) (4)

where u follows v in an LBSN. However, it is hard to set the
size of∆ x and∆ y. Thus, we will show another approach to
derive the propagation probability in an LBSN.

Estimation error: The estimation error describe the
error between the mobility model from observations and real
mobility model. Here we select Mean Square Error (MSE)
to describe the situation. The details are as follows:

MSE(µ̂) = Var(µ̂) =
1
n
[σ2

x + σ2
y ]

and

MSE(Σ̂) = Var(Σ̂) = trace(Var(S2))

=
2

n− 1
σ2
x +

2
n− 1

σ2
y =

4
n− 1

(σ2
x + σ2

y)

Thus, the MSE of µ̂ and Σ̂ are O( 1
n
), where n denotes the

number of check-in records.

4.2.2 Distance-based Mobility Models
Since it is hard to calculate the probability from Gaussian-

based Mobility Models, we use the distance instead of coor-
dination of location to describe each user’s mobility model.

ℓ2

ℓ1

ℓ3

p
(u)
ℓ1

p
(u)
ℓ2

p
(u)
ℓ3

f (u)(d(ℓ1, ℓ))

f (u)(d(ℓ2, ℓ))

f (u)(d(ℓ3, ℓ))
ℓ

Figure 7: The concept of the distance-based mobility
model

Moreover, using a Gaussian-based mobility model can not
capture the order of the check-in records. We argue that
different orders of check-in records have different mobility
models. However, the distance-based mobility model takes
the order of check-in records into account. Thus, we select
the distance as an important feature to capture each user’s
check-in behavior.

Distance-based mobility model (denoted as DMM-
Basic): The idea of distance-based mobility models is that
it estimates the probability of a user moving from their vis-
ited locations to the target location. Therefore, distance-
based mobility models have two layers. The first layer is the
stationary distribution of visited locations, and the second
layer is the probability density of moving from the visited
locations to the target location. The stationary distribution
is from random walk with restart since it is used to simulate
the movements of moving objects [11]. Moreover, we select
the Pareto distribution for the distance distribution since
the movement distance in LBSNs has a self-similar property
[23]. Based on the concept above, the probability density of
a location ℓ, pu(ℓ), can be shown as follows:

pu(ℓ) =
∑

l

P (u moves from l to ℓ)

=
∑

l

P (u is at l)P (u moves distance d(l,ℓ ) from l)

=
∑

l

p
(u)
l f (u)(d(l,ℓ )) (5)

where p
(u)
l denotes the stationary probability of user u at

visited location l, f (u)(d(l,ℓ )) denotes the probability den-
sity of user u moving from a visited location l to the target
location ℓ, and d(l,ℓ ) denotes the distance between l and ℓ.

Figure 7 shows an example of the distance-based mobil-
ity model. The user u has three visited locations ℓ1, ℓ2
and ℓ3. The stationary probabilities of ℓ1, ℓ2 and ℓ3 are
p
(u)
ℓ1

, p
(u)
ℓ2

and p
(u)
ℓ3

, respectively. Assume that u has five
check-in records (u,ℓ 1, t1), (u,ℓ 2, t2), (u,ℓ 3, t3), (u,ℓ 1, t4)
and (u,ℓ 3, t5), where ti < tj if i < j. Thus, the transi-
tion probabilities are P (ℓ1 → ℓ2) = 0.5, P (ℓ1 → ℓ3) = 0.5,
P (ℓ2 → ℓ3) = 1 and P (ℓ3 → ℓ1) = 1. Then the station-

ary distribution of locations is p
(u)
ℓ1

= 0.39, p(u)ℓ2
= 0.21 and

p
(u)
ℓ3

= 0.40, where the restart probability is 0.15 and the
initial distribution of ℓ1, ℓ2 and ℓ3 is uniform.

The distance distribution is described by the Pareto dis-
tribution. The form of Pareto distribution is as follows:

f(x;α,β ) =
αβα

xα+1
(6)
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(a) DMM-Basic (b) DMM-Basic (different order) (c) DMM-Social

Figure 8: Examples of distance-based mobility models, where the user is the same as in Figure 4
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Figure 9: The distribution of distance of next move-
ment in two different datasets

where α is the shape parameter and β is the minimum of x.
Since β cannot be 0, we fix β = 1. Thus, the Equation 6
can be written as follows:

f(x;α) =
α

xα+1
(7)

To utilize Pareto distribution to describe the movement dis-
tance of each user, we have to evaluate a suitable α for each
user from their distance observations. Assume there are n
distance observations x1, x2, · · · , xn. Since β is fixed to
1 and the minimum of xi is 0, xi is shifted 1 to yi where
yi = xi +1. Based on MLE, the estimator of α is as follows:

α̂ =
n

∑

i ln(yi)
=

n
∑

i ln(xi + 1)
(8)

Figure 8(a) shows an example of DMM-Basic. DMM-
Basic is more representative than GMMs for individual check-
in behavior. If we modify the order of the check-in records,
Figure 8(b) shows the result. If the order is modified, the
model is different in DMM. It is different from GMMs since
GMMs focus on the coordinates of the check-in records but
not on the relation between check-in records. There are two
differences if the order is modified. First, the distribution
of higher probability density in Figure 8(a) is different from
the distribution of higher probability density in Figure 8(a).
It shows that the stationary distribution is changed if the
order is modified. Second, the distribution probability den-
sity in Figure 8(b) is smoother. It shows that the user is
more likely to move to distant locations.

Distance-based mobility model with social infor-
mation (denoted as DMM-Social): Users’ check-in be-
havior can be influenced by their friends in LBSNs [5][22].

Therefore, the moving distances are divided into two parts,
self movement behavior and social influenced moving be-
havior. Self movement behavior means that the movement
is based on their movement behavior, and social influenced
moving behavior means the movement is influenced by their
friends. Figure 9 shows the distribution of distance of next
movement in two different datasets. The distributions can
be divided into two parts. Similar observations are also
found in [5]. The distance-based with social mobility model
can be shown as follows:

p(ℓ) =
∑

l

p
(u)
l [f (u)

M (d(l,ℓ ))p(M) + f
(u)
S (d(l,ℓ ))p(S)] (9)

where p(M) and p(S) denote the probability of a distance
contributed by mobility and social influence, respectively.
Moreover, f

(u)
M (d(l,ℓ )) and f

(u)
S (d(l,ℓ )) denote the proba-

bility of moving d(l,ℓ ) contributed by mobility and social
influence, respectively. p(M), p(S) and the parameters of

f
(u)
M (d(l,ℓ )) and f

(u)
S (d(l,ℓ )) can be learned by the EM al-

gorithm. The Pareto distribution is also utilized for the
distance distribution f

(u)
M (·) and f

(u)
S (·).

Figure 8(c) shows an example of DMM-Social. DMM-
Social is smoother than the DMM-Basic in Figure 8(a) and
8(b). It reflects the distance which will be influenced by
friends in Figure 9. Moreover, the coordinate of check-in
records is also considered.

Deriving propagation probability: If a user tends to
travel a larger distance than that between the user and the
target location, there is a higher chance that the user will
visit the target location. Thus, to calculate the probability
based on a distance-based mobility model, we just calculate
the probability of moving the distance which exceeds the dis-
tance between the visited locations and the target location.
Thus, the probability of u check-in at ℓ is as follows:

Pu(ℓ) =
∑

l

p
(u)
l

∫

∞

d(l,ℓ)+1

f (u)(x)dx (10)

Furthermore, in DMM-Basic, the probability is as follows:

Pu(ℓ) =
∑

l

p
(u)
l

(d(l,ℓ ) + 1)α̂
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Table 1: The number of users in the different numbers of training records
# of training records total users

10 20 30 40 50 60 70 80 90 100
gowalla 1,568 10,648 444 4,604 244 2,560 137 1,614 94 1,079 22,992
brightkite 636 315 215 143 111 80 62 64 40 31 1,697

where α̂ is from Equation 8. Then, in DMM-Social, the
probability is as follows:

Pu(ℓ) =
∑

l

p
(u)
l [

p(M)
(d(l,ℓ ) + 1)α̂M

+
p(S)

(d(l,ℓ ) + 1)α̂S
]

where p(M), p(M), α̂M and α̂S are from Equation 9. Fur-
thermore, the propagation probability on edges is also the
same as in Equation 4.

Estimation error: The estimation error of the distance-
based mobility model is as follows:

MSE(â) = Var(â) = Var(
n

∑

i ln xi
)

= n2 Var(
1

∑

i yi
), where y = ln x

≈ n2 a
4

n3
=

a4

n

The MSE of α̂ is O( 1
n
). The results2 show that the estima-

tion error of the distance-based mobility models is similar to
the estimation error of the Gaussian-based mobility models.

5. PERFORMANCE EVALUATION
In this section, extensive experiments are conducted to

evaluate the effectiveness of our proposed mobility models,
GMMs and DMMs. Moreover, we also show the results of
static propagation probability and location-aware propaga-
tion probability in LBSNs. We implemented the proposed
models in Python.

5.1 Datasets Description
In this paper, we have selected the gowalla and brightkite

datasets [5] for observation and evaluation3. There are 196,591
users, 950,327 social connections and 6,442,890 check-ins
during February 2009 - October 2010 in the gowalla dataset.
Moreover, there are 58,228 users, 214,078 social connections
and 4,491,143 check-ins during April 2008 - October 2010 in
the brightkite dataset.

5.2 Comparison of Different Mobility Models
To compare the performance of different mobility mod-

els, log-likelihood is selected to measure the mobility mod-
els for LBSNs since the mobility model is a two-dimensional
probability density distribution [5][6][17]. If the value of log-
likelihood is higher, the mobility model represents the real
check-in behavior of each user well. Due to the spatial and
temporal sparsity issue of check-in records, most users sel-
dom perform check-in records (10−100 records). Therefore,
we observe the relation between the number of training data
and log-likelihood of each mobility model here. The propor-
tion of training and testing of check-in records are 80% and

2The approximation is based on the delta method.
3Both of these datasets are public datasets which can be
downloaded from https://snap.stanford.edu/data/.
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Figure 10: The results of GMMs and DMMs with
different numbers of training records in different LB-
SNs

20%, and the number of training records are 10, 20, · · · , 100
in the two datasets. The details of the number of users are
given in Table 1.

Figure 10 shows the results of comparison with differ-
ent numbers of training records in the two datasets. In
the gowalla dataset, DMMs present higher log-likelihood
value than GMMs. Since the state-of-the-art approaches
[5][6][17] proposed Gaussian-based mobility models, our pro-
posed GMMs further consider spatial and temporal informa-
tion. As shown in Figure 10, DMMs can better reflect indi-
vidual check-in behavior than GMMs, which demonstrates
the advantage of DMMs. However, when the number of
training data is 70, all approaches have higher log-likelihood
value. It can be considered as a bias since the number of
data which contain 70 training records is lower than oth-
ers (Table 1). On the other hand, DMM-Social has higher
log-likelihood value than DMM-Basic. By exploring social
information in LBSNs, DMM-Social is closer to real indi-
vidual check-in behavior. Furthermore, DMMs can capture
individual check-in behavior by only 10 training records. It
shows that DMMs deal with the spatial and temporal spar-
sity issue of check-in records. The results in brightkite are
similar to the results in gowalla. However, the amplitude
of GMMs is large since the number of data we selected is
lower.

5.3 Comparison of Different Distributions for
Distance

In DMMs, the Pareto distribution is selected to repre-
sent the distance of the next movement of each user. Some
related distributions (such as exponential and log-normal
distribution) are listed. The domain of these two distribu-
tions is [0,∞), and they are related to Pareto and Gaussian
distribution, respectively. To compare different distance dis-
tributions in DMMs, DMM-Basic is selected since it is the
simplest form in DMMs. Then, the distance distribution in
DMM-Basic is replaced with exponential and log-normal dis-
tribution, respectively. The modified DMM-Basic is called
DMM-Exponential and DMM-Lognormal, respectively.

Figure 11 shows the results of the comparison of DMM-
Basic, DMM-Exponential and DMM-Lognormal. DMM-
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Figure 11: The results of three distance distribu-
tions in DMM-Basic with different numbers of train-
ing records in different LBSNs
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Figure 12: The results of five approaches for static
propagation probability in different LBSNs

Basic has higher log-likelihood value in two datasets. DMM-
Exponential has the lowest log-likelihood value such that the
distance of next movement is not memoryless. Finally, the
results show that the Pareto distribution is more suitable
for the distance of next movements in LBSNs than the ex-
ponential and log-normal distribution in both datasets.

5.4 Comparison of Methods for Propagation
Probability

To compare different approaches to set propagation prob-
ability, the ROC curve is selected to show the results of
different global activation thresholds [1][9]. Two target loca-
tions are selected: one is San Francisco Caltrain Station, San
Francisco (37.776430N 122.394318W), and the other is Cen-
tral Park, New York City (40.780606N 73.968088W). More-
over, we only selected users who have 10 check-in records or
above. There are 67,653 users and 629,031 edges selected
in the gowalla dataset, and 24,100 users and 243,922 edges
selected in the brightkite dataset. To determine whether a
user is active or not, we set the active range of the target
location. Note that the active range is also used to calculate
the propagation probability of GMMs. If one of the user’s
check-in records is in the active range, the user is active
in the ground truth. In the experiments, the radius of the
active range is set to 500m. For the approaches in static
propagation probability, five approaches are selected in the
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Figure 13: The results of five approaches for
location-aware propagation probability in different
LBSNs

experiments, where In-degree denotes in-degree of nodes,
Jaccard F denotes jaccard index of friends, Jaccard L de-
notes jaccard index of locations, Cosine denotes cosine of
locations, and Bernoulli denotes Bernoulli estimator.

Figure 12 shows the results of five approaches for static
propagation probability. In the gowalla dataset (Figure 12(a)
and 12(b)), Bernoulli performs well than other approaches
of static probability but not significant. Although Bernoulli
learns from history records, it can not adapt to the infor-
mation propagation in LBSNs. The ROC curves of Jac-
card F, Jaccard L and Cosine are closest to the diagonal.
Thus, the number of common friends and locations are not
related to the information propagation in LBSNs. Further-
more, In-degree, the most common used method in social
networks [4][13][16], is worse than random guess. Thus, the
in-degree of nodes and the degree of information propagation
in LBSNs are not helpful in the location promotion problem.
Finally, the results show that the ROC curves of five ap-
proaches are closed to the diagonal in both target locations.
From the above experimental results, the static propagation
probability is not able to truly reflect the information prop-
agation in LBSNs. The results in the brightkite dataset are
shown in Figure 12(c) and 12(d), and these results depict
the similar phenomenon.

Figure 13 shows the results of five approaches for location-
aware propagation probability. In the gowalla dataset (Fig-
ure 13(a) and 13(b)), DMM-Basic has the largest AUC (Stand-
ing for Area Under Curve), where the target location is set
to NYC. On the other hand, DMM-Basic and DMM-Social
have similar AUC when the target location is set to San
Francisco. Both DMM-Basic and DMM-Social has a bet-
ter performance with different target locations. Moreover,
GMMs have the lowest AUC and these curves of GMMs are
close to the diagonal, where the diagonal curve represents
the results of random guess. The reason is that the location-
aware propagation probability from GMMs is controlled by
the area around the target location. If the area is large,
and then the probability is higher. It reflects the disadvan-
tage that it is hard to derive the location-aware propagation
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probability from GMMs. Particularly, The GMM-Spatial
has the best performance in GMMs. It shows individual
check-in behavior can be divided into many states by spatial
information. However, GMM-Spatial is limited by the disad-
vantage of calculating location-aware propagation of GMMs.
As such, GMM-Spatial has lower AUC than DMMs. Finally,
DMMs have larger AUC than GMMs, which indicates that
DMMs are suitable to reflect the information propagation
and derive the location-aware propagation in LBSNs. The
results shown in Figure 13(c) and 13(d) are experiments in
the brightkite dataset, which indicate the similar results in
the gowalla dataset.

6. CONCLUSION
In this paper, we addressed on the location promotion

problem in LBSNs. Explicitly, the location promotion prob-
lem is formulated as an influence maximization problem.
Given a target location and an LBSN, we aimed at deriving
a set of k seed users to maximize the number of influenced
users to visit the target location. The most challenging is
to derive the propagation probability with different target
locations in LBSNs. By referring to prior works on influ-
ence maximization, we developed some baselines to deter-
mine the propagation probabilities. Note that we claimed
that user mobility should be considered in deriving propa-
gation probabilities in LBSNs. Users should reach/visit the
target location and thus will spread the target location infor-
mation to their friends. Since the information propagation
is triggered by check-in in LBSNs, we propose Gaussian-
based mobility models, GMMs, and distance-based mobility
models, DMMs, to capture individual check-in behavior in
LBSNs. DMMs have the advantage of not only capturing
individual check-in behavior but also deriving the propaga-
tion probability in LBSNs. The experimental results show
that DMMs perform better than other state-of-the-art ap-
proaches in terms of capturing individual check-in behav-
ior and dealing with the spatial and temporal sparsity issue
of the check-in data since it considers not only corrdinates
of check-in records but also the relations between check-in
records. Moreover, DMMs really reflects the dynamic prop-
agation probability with different target locations in LBSNs.
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