
1126 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 2, SECOND QUARTER 2015

From QoS to QoE: A Tutorial on Video
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Abstract—Quality of experience (QoE) is the perceptual quality
of service (QoS) from the users’ perspective. For video service, the
relationship between QoE and QoS (such as coding parameters
and network statistics) is complicated because users’ perceptual
video quality is subjective and diversified in different environ-
ments. Traditionally, QoE is obtained from subjective test, where
human viewers evaluate the quality of tested videos under a
laboratory environment. To avoid high cost and offline nature of
such tests, objective quality models are developed to predict QoE
based on objective QoS parameters, but it is still an indirect way
to estimate QoE. With the rising popularity of video streaming
over the Internet, data-driven QoE analysis models have newly
emerged due to availability of large-scale data. In this paper, we
give a comprehensive survey of the evolution of video quality
assessment methods, analyzing their characteristics, advantages,
and drawbacks. We also introduce QoE-based video applications
and, finally, identify the future research directions of QoE.

Index Terms—Quality of experience, subjective test, objective
quality model, data-driven analysis.

I. INTRODUCTION

W ITH the exponential growth of the video-based services,
it becomes ever more important for the video service

providers to cater to the quality expectation of the end users. It
is estimated that the sum of all forms of videos (TV, video-on-
Demand (VoD), Internet, and P2P) will be around 80%∼90%
of global consumer traffic by 2017 [1]. Video streaming over
the Internet, especially through mobile network, is becoming
more and more popular. Throughout the world, Internet video
traffic will be 69% of all consumer Internet traffic by 2017 [1],
and mobile video traffic will be over one third of mobile data
traffic by the end of 2018 [2].
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Fig. 1. Video quality assessment evolution.

In early works, researchers were trying to increase user
perceptual video quality by appropriately selecting QoS pa-
rameters (such as video compression optimization [3]–[5] and
network bandwidth allocation [6]–[8]). In [5], the authors study
the relationship between the peak signal-to-noise ratio and
quantization parameter, and propose a linear rate-quantization
model to optimize quantization parameter calculation. In [8],
the authors present a dynamic network resource allocation
scheme for high-quality variable bitrate video transmission,
based on the prediction of future traffic patterns. While monitor-
ing and controlling QoS parameters of the video transmission
system is important for achieving high video quality, it is more
crucial to evaluate video quality from the users’ perspective,
which is known as Quality of Experience (QoE), or user-lever
QoS. QoE-based video quality assessment is difficult because
user experience is subjective, hard to quantify and measure.
Moreover, the advent of new video compression standards, the
development of video transmission systems, and the advance-
ment of consumer video technologies, all call for a new and
better understanding of user QoE. Video quality assessment has
gone through four stages, as shown in Fig. 1. Table I gives a
comparison of these video quality assessment methods.

QoS monitoring for the video traffic includes two parts: QoS
provisioning from the network and QoS provisioning from the
video application. QoS support from the network, especially
wireless or mobile network, is essential for video delivery
over the Internet. Three major approaches are congestion con-
trol, error control and power control. The challenges facing
network QoS support include unreliable channels, bandwidth
constraints, heterogeneous access technologies. QoS support
from the video application includes advanced video encoding
scheme, error concealment and adaptive video streaming pro-
tocol. A survey of video QoS provisioning in mobile network
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TABLE I
COMPARISON OF VIDEO QUALITY ASSESSMENT METHODS

is given in [9], mostly from the network point of view. Error-
concealment schemes are investigated in [10]. [11] and [12]
consider both network and application QoS support. In this
tutorial, we mainly focus on Stages II ∼ IV of video quality
assessment. In the main text, we will not discuss Stage I,
and interested readers can refer to the above surveys for more
information.

Subjective test directly measures user QoE by soliciting
users’ evaluation scores under the laboratory environment.
Users are given a series of tested video sequences, original ones
and processed ones included, and then required to give scores
on the video quality. Detailed plans for conducting subjective
tests have been made by the Video Quality Expert Group
(VQEG) [13]. Though being viewed as a relative accurate way
of measuring user QoE, subjective test suffers from three major
drawbacks. First, subjective test has high cost in terms of time,
money, and manual effort. Second, subjective test is conducted
in the laboratory environment, with limited test video types, test
conditions, and viewer demography. Therefore, the results may
not be applicable to video quality assessment in the wild. Third,
the subjective test cannot be used for real-time QoE evaluation.

In order to avoid high cost of subjective test, objective quality
models are developed. The major purpose is to identify the
objective QoS parameters that contribute to user perceptual
quality, and map these parameters to user QoE. Subjective test
results are often used as ground truth to validate the perfor-
mance of the objective quality models. Most of the objective
quality models are based on how the Human Visual System
(HVS) receives and processes the information of the video
signals. One of the commonly used methods is to quantify the
difference between the original video and the distorted video,
then weigh the errors according to spatial and temporal features
of the video. However, the need to access original video hinders
online QoE monitoring. In order to develop QoE prediction
models that do not depend on original videos, network statistics
(such as packet loss) and spatiotemporal features extracted
or estimated from the distorted video, are leveraged. Though
some of the objective quality models can realize real-time
QoE prediction(e.g., [14]–[27]), it is still an indirect way for
QoE prediction. Most of the objective quality models rely on
subjective test results to train model parameters. Therefore,
these models cannot be widely applied due to limitations of the
subjective test.

Data-driven video quality analysis emerges as a promising
way of solving the problems faced by the previous methods.
Video streaming over the Internet has made large-scale of data

available for analyzing user QoE. How to effectively leverage
these valuable data is both challenging and promising. There
are two ongoing trends for data-driven video quality assess-
ment. The first trend is from user quality of “experience” to
user quality of “engagement”. In stead of user opinion score,
which can only be obtained from subjective test, QoE metrics
that can be easily quantified and measured without much hu-
man interference are being explored, for example, the viewing
time, the number of watched videos and the probability of
return. The second trend is from small-scale lab experiments
(e.g., VQEG FRTV-I subjective test involved 287 viewers [28],
LIVE database involved 31 viewers [29]) to large-scale data
mining (e.g., [30] contains 40 million video viewing sessions).
Sophisticated models with high computational complexity may
work well on small-scale data, but are very likely to be outper-
formed by simple models on large-scale online QoE evaluation.
Developing light-weight, efficient and reliable QoE prediction
models based on big data is the future direction.

There have been several surveys on video quality assess-
ment [31]–[34], mostly focusing on objective quality models.
This survey paper differs from all the previous survey papers
as it provides a comprehensive overview of the evolution of
QoE-based video quality assessment methods. As far as we
know, we are the first to include the data-driven QoE analysis
models, which have newly emerged and raised research interest.

The rest of the paper is organized as follows. In Section II,
we provide the background of video quality assessment, and
identify factors that may influence user QoE. In Section III,
we give a detailed description of subjective test. In Section IV,
we classify existing objective quality models and introduce
representative ones in each class. In Section V, we present the
new research progress on the data-driven QoE analysis models.
In Section VI, applications of video QoE models are reviewed.
Future research directions on QoE are discussed in Section VII.
We finally summarize our work in Section VIII.

II. BACKGROUND

In this section, we give a brief introduction of the video
transmission system, focusing on the factors that may have
an influence on user experience by causing video distortions
or affecting viewing environment. In the subjective test, these
factors are often considered as test conditions; in the objective
quality models, these factors are often used as input for comput-
ing the final objective metrics; in the data-driven analysis, these
factors are often collected in the data set for QoE prediction.
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Fig. 2. Video transmission path.

The video transmission path from the server side to the
client side includes: encoder, transmission network, decoder
and display, as shown in Fig. 2. Each of these four places may
introduce distortions or impairment that will affect the viewers’
perception of the video quality. The resulting distorted videos
usually exhibit the following typical visual distortions [35]:

• Blocking effect. Blocking effect refers to the discontinuity
at the boundaries of two adjacent blocks. The reason for
blocking effect is that the video coding is block-based,
that is, individual blocks are coded separately, resulting in
different types and levels of coding errors.

• Blurring. Blurring refers to the loss of spatial information
or edge sharpness, especially for roughly textured areas or
around scene object edges.

• Edginess. Edginess refers to the distortions happened at
the edges of an image. The differences between the edge
characteristics of the original video and those of the
distorted video are often given special attention.

• Motion jerkiness. Motion jerkiness refers to the time-
discrete intermission of the original continuous, smooth
scene. This often happens due to delay variance (also
known as “jitter”), which will be explained in Section II-B.

The visual impact of the above distortions does not only
depend on the absolute quantization error, but also on the
spatiotemporal features of the video sequence, both in the local
level and in the global level. The threshold, above which the
distortion is perceivable, is often referred to as Just Noticeable
Difference (JND) [36], [37]. In the JND model, the following
characteristics of the Human Visual System (HVS) are most
commonly considered [38], [39]:

• Low-level characteristics:

– Frequency-dependent sensitivity. The HVS has differ-
ent sensitivity to motion, shape, depth, color, contrast,
and lumination. Therefore, different errors will re-
ceive different sensitivity from the HVS. The HVS
sensitivity decreases as the spatial or temporal fre-
quency increases [40]. Many models use low-pass
filter or band-pass filter to simulate such a feature [36],
[41]–[44].

– Masking effect. Under masking conditions, the per-
ception of the visual target will be weakened by the
masking stimulus in temporal or spatial proximity. A
review of the research on visual masking can be found
in [45].

• Mid- to higher-level characteristics include attention, eye
movement and different unpleasantness towards different

TABLE II
COMPARISON OF VIDEO COMPRESSION FORMATS

distortions. For example, looking at an image, the HVS
first perceives the global structure, and then observes the
detailed specifics. This coarse-to-fine-grained process is
known as Global precedence, one important feature of the
HVS [46].

Interested readers can refer to [47] for a detailed description
of the artifacts of video compression and the mechanism of
HVS [47].

A. Coding and Compression

In order to transmit rich video content through a capacity-
limited network, the original video information needs to be
reduced by compression. The compression methods may be
lossy or lossless: lossless compression method can restore
the original video while the lossy method may lead to video
quality degradation. Video compression formats define the way
to represent the video and audio as a file or a stream. Video
codec, a device or software, encodes (compresses) or decodes
(decompresses) a digital video based on the video compression
format. The encoded video is often combined with an audio
stream (encoded based on the audio compression format) to fit
in a multimedia container format1 such as FLV, 3GP, MP4, and
WebM. Table II gives a comparison of commonly-used video
compression formats.

The video compression formats, such as MPEG or H26x,
significantly influence the video quality, because they decide
how a video is coded. The following coding-related factors are
often taken into consideration for QoE evaluation.

• Bitrate. Bitrate is the rate at which the codec outputs data.
Constant bitrate (CBR) and variable bitrate (VBR) may be

1A container format can contain different types of video and audio compres-
sion. The container format may also include subtitles, chapter-information, and
meta-data.
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used. CBR is simple to implement, but it may not allocate
enough data for more complex part of the video. VBR
fixes the problem by flexibly assigning different bitrates
according to the complexity of the video segments, but it
takes more time to encode. Moreover, the instant bitrate
of the VBR may exceed the network capacity. Efficient
compression formats can use lower bitrates to encode
video at a similar quality. Moreover, it is shown that
high bitrate does not always lead to high QoE (e.g., fre-
quent bitrate switching annoys viewers [30], [48]). There-
fore, bitrate alone is not reliable to measure the video
quality.

• Frame rate. Frame rate is the number of frames per sec-
ond. The human visual system (HVS), can analyze 10 to
12 images per second [49]. The frame rate threshold,
beyond which the HVS perceives no interruption, depends
on both the content (e.g., motion) and the display (e.g.,
lighting). Given a fixed encoding bitrate subject to band-
width limitation, higher frame rate means lower number
of bits for each frame, therefore higher coding and com-
pression distortions. It is shown that the frame rate affects
QoE depending on the temporal and spatial characteristics
of the video content [50].

• Temporal and spatial features of the video. Videos with
different temporal and spatial features will have different
degree of perceptual quality. For example, videos with low
temporal complexity, where the frames are very similar
to each other, may suffer less from jitter or packet loss
as the viewers may not notice the delayed or missing
frames. However, videos with high temporal complexity,
where frames are quite different from each other, may be
sensitive to jitter or packet loss because much information
will get lost. A classification of video content, based on
their temporal (e.g., movement) and spatial (e.g., edges,
blurriness, brightness) features, is given in [51].

B. Transmission Network

Common transmission networks that are considered in the
video QoE research include television broadcasting network
and the Internet. For television broadcasting network, video
quality assessment is usually conducted for different display
resolutions, such as standard-definition television (SDTV),
enhanced-definition television (EDTV), high-definition televi-
sion (HDTV) and ultra-high-definition television (UHDTV).
For video over the internet, special attention has been paid to
IP network and wireless network, the latter including cellu-
lar network (or mobile network), wireless local area network
(WLAN), sensor network and vehicular network. The video
may be delivered by client-server video distribution or P2P
video sharing.

Transmission network condition will greatly affect the video
quality. Fig. 3 gives a brief illustration of the end-to-end video
transmission between the server and the client. There are three
major factors that will lead to video quality degradation.

• Packet loss, which is due to unreliable transmission.
• Delay, which depends on the network capacity.
• Jitter, also called delay variance, refers to irregular delays.

Fig. 3. Video transmission. (a) Delay. (b) Delay + Packet loss. (c) Delay +
Jitter.

If there is only transmission delay (no packet loss or jitter),
the video can be played smoothly with the help of a buffer.
With packet loss, the most recent frame may freeze, then jump
to the next inconsecutive frame that arrives. Packet loss can
be compensated by retransmission at the cost of increased
delay and jitter. Retransmission is a tradeoff between decreased
packet loss and increased delay and jitter. With jitter, the most
recent frame may freeze, until the belated frame arrives. Jitter
can be mitigated through buffering, where the receiver plays the
frames in the buffer with more steadiness. Choosing the optimal
buffer size is a tradeoff between decreased jitter and increased
delay. Some research found that jitter has nearly the same effect
on the QoE as packet loss [52].

C. External Factors

Apart from distortions, there are other factors that will affect
QoE. These external factors, some of which may not have direct
impact on the video quality, influence users’ experience by
affecting viewing environment. The following are some typical
external factors:

• Video service type, whether the video is live streaming
video or Video-on-Demand (VoD). In [30], [53], it is
assumed that viewers may have different quality expec-
tations of VoD and live streaming video. By separating the
two types of videos, the QoE prediction can be improved.

• Viewer demography. The characteristics of the viewers
such as age, gender, occupation, nationality or even educa-
tion background and economic factors will all have some
impact on their perceived quality.

• Viewer geography. Studies show that people from different
countries have different patience when faced delay of a
service [54].

• Video length. It has been verified that viewer behaviors are
different towards long videos (e.g., more than 10 minutes)
and short videos (e.g., less than 10 minutes). For example,
viewers are likely to be more tolerant of distortions when
watching long videos than short videos.

• Video popularity. Viewers tend to be more tolerant of bad
QoS for popular videos. However, there is also an inter-
esting finding that more popular video has short viewing
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Fig. 4. A summary of existing perceptual video quality assessment works.

session [55]. Possible explanation is that popular videos
may be viewed from other sources, and viewers quit not
wanting to watch repeated sessions.

• Device. The devices on which viewers can watch the
video include TV, desktop computer, laptop, tablet, smart-
phone, etc. Specifically, the fast-growing popularity of
smartphone and tablet draws attention to study on viewer
experience on these devices. Viewers may have different
expectations when they watch video on different devices.
Device also determines the screen size. Typical screen
sizes include QCIF, CIF, VGA, SDTV or HDTV [56].

• Time of the day & day of the week. User experience may
be different when they watch video in peak hours or idle
hours. It is estimated that viewers may have better viewing
experience in the evening and on weekends, when they are
more relaxed and are expected to watch the videos for a
longer time.

• Connectivity. The major concern is usually the last-mile
connection, for example, fiber, cable, DSL, 3G/4G, etc.

Before we discuss each stage of video quality assessment, we
first give a brief summary of the related works in Fig. 4.

III. SUBJECTIVE TEST

Subjective test directly measures QoE by asking human
assessors to give their scores for the quality of the video
sequences under test. Subjective test results are often used
as the ground truth for validating the performance of the
objective quality model in Section IV. In this section, we first
describe the conventional procedures of conducting subjective
test in the laboratory context. Then, we give special instructions
to the requirement of subjective test for 3D videos. Finally,
we introduce subjective test crowdsourcing through Internet
crowdsourcing platforms.

The flow of the subjective test is shown in Fig. 5.

A. Test Preparation

Test preparation includes checking the test environment, set-
ting up equipment, selecting source videos, processing source
videos, and recruiting assessors [57].

Fig. 5. Flow of the subjective test.

TABLE III
TEST ENVIRONMENT REQUIREMENT [57]

1) Test Environment: The subjective test can be conducted
in two kinds of environment: laboratory environment and home
environment, yet nearly all the subjective tests are conducted in
the laboratory environment. Table III shows the requirement of
both environment specified by the International Telecommuni-
cation Union (ITU) Recommendation ITU-R BT. 500-11 [57].

While the laboratory environment is easier to control, the
home environment is more close to the users’ real viewing
experience. The screen size affects the preferred viewing dis-
tance (PVD), at which the viewers have the optimal viewing
experience. Therefore, in the test, the viewing distance should
be adjusted to satisfy the PVD determined by the screen size.
It is suggested that the maximum and minimum resolutions of
the monitor be reported, especially the consumer TV sets used
in the home environment.

2) Source Video Selection: As we discussed before, the
video content will influence user viewing experience. When
selecting the source materials, the following factors have to be
taken into consideration.

• Color.
• Luminance.
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– High luminance
– Low luminance.

• Motion and spatial features.

– Still images or video sequences.
– Moving directions of the objects.

• Source origin, e.g., film, news, sports.
• Other factors, e.g., avoiding cultural or gender offensive

materials.

3) Source Video Processing: The experimenters have to
choose the Hypothetical Reference Circuits (HRC), such as the
encoding bitrate and packet loss rate, to process the source
videos. Firstly, the encoder encodes the video with a certain
video compression format, during which the encoder’s distor-
tions are applied. Secondly, the video goes through the (often
simulated) transmission network, during which the network’s
distortions are applied. Finally, the processed video can be
obtained after decoding. If more than one distortion factors are
considered (let F1, F2, . . . Fk denote the various factors, and
Fi has ni levels fi,1, fi,2, . . . , fi,ni

), “reasonable” range for
each distortion factor (i.e., fi,1, fi,2, . . . , fi,ni

) should be de-
termined, and the maximum and minimum values be specified.
There are two ways to process the videos:

• Each processed video represents a level of one factor,
while other factors are fixed at a chosen level. For in-
stance, for factor Fi, we have processed videos {(f1,0, . . . ,
fi,j , . . . , fk,0)}j=1,...,ni

, in which f1,0, . . . , fk,0 are refer-
ence levels.

• All combinations of the factor levels are consid-
ered, that is, we have processed videos {(f1,j1 , . . . ,
fk,jk)}ji=1,...,ni

.

After the video processing, the processed videos need to be
normalized to eliminate “deterministic” differences from the
source videos. The normalization includes temporal frame shift,
horizontal and vertical spatial image shift, and chroma and
luma scaling and alignment. The amount of normalization is
estimated from the source and processed videos, and will be
applied uniformly to all the video sequences. The accuracy of
the alignment can be verified by MSE.

4) Assessor Recruitment: It is required that at least 15 non-
expert assessors should be recruited for the tests. The assessors
should be tested on visual acuity, color vision and familiarity
of the language used in the test. Since the demography of
the assessors may have influence on the final evaluation re-
sults, their personal information should be collected as broadly
as possible such as age, gender, occupation, education, etc.
Before the test sessions start, the assessors should be given
instructions on:

• The flow of the test, e.g., training subsessions and test
subsessions;

• The presentation of each trial, e.g., double stimulus or
single stimulus;

• The possible quality impairment, e.g., color, brightness,
depth, motion and “snow”;

• The evaluation scale, e.g., continuous or categorical.

Fig. 6. DSIS video/image presentation sequence option I.

Fig. 7. DSIS video/image presentation sequence option II.

TABLE IV
DSIS SCALE

B. Test Execution

Test execution includes conducting the subjective tests and
collecting the test results (e.g., user scores) [57]. Each test
session should last fewer than 30 minutes, consisting of three
subsessions:

• Training subsession is used to give instructions to the
assessors about the sequence and timing of the test.

• Stabilizing subsession is used as a “warm-up” for the
assessors to stabilize the following assessment. The as-
sessment in this subsession will not be included as the
results for further analysis.

• Main test subsession is the formal test phase, the results of
which will be used for further analysis.

The order of the video presentation should be randomized,
covering all the possible impairment conditions that are under
study. In the main test subsession, there are several test methods
that can be applied:

1) Double-Stimulus Impairment Scale (DSIS) Method (The
EBU Method): For the DSIS, the assessors are first presented
the source video, then presented the processed video. The asses-
sors only grade the processed video, based on his knowledge or
impression of the source video. For the assessment of a certain
video, the presentation sequence has two options as shown in
Figs. 6 and 7. In Fig. 6, the source video and the processed
video are presented to the assessor only once, and the assessor
can grade the video at the start when he sees the processed
video. In Fig. 7, the source video and the processed video are
presented to the assessors twice, and the assessor can grade at
the start when he sees the source video for the second time.
The scale for DSIS is discrete grades from 1 to 5 as shown in
Table IV, indicating how the assessors evaluate the impairment
of the processed video. It is found that the DSIS results are more
stable for small impairment than for large impairment.

2) Double-Stimulus Continuous Quality-Scale (DSCQS)
Method: In DSCQS, the assessors are also presented both the
source video and the processed video. Let “PS” and “SP”
denote the order of “first processed video, then source video”
and“first source video, then processed video” respectively. It
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Fig. 8. DSCQS scale.

Fig. 9. SS video/image presentation sequence option I.

should be followed that the same video with different test
conditions are not presented consecutively. The number of
consecutive “PS” presentation order should be no more than
a threshold, the same is for the “SP” presentation order. In
addition, the number of events that two video sequences are
presented consecutively should be no more than a threshold.
Compared with DSIS, DSCQS is different in the following
aspects:

• For the same video, both the source version and the
processed version are presented to the assessors, but the
assessors do not know which one is the source version.

• The assessors are asked to grade both versions of the same
video. The scale for DSCQS grading is different (as shown
in Fig. 8) in two aspects:

– It has continuous grade bars;
– It has two bars for the same video.

• For DSCQS grades, it is not the absolute value, but the
difference between the two values for the same video, that
matters.

3) Single-Stimulus (SS) Method: In SS, only the processed
videos are presented to the assessors. The presentation can have
two forms:

• Each processed video is shown once to the assessors
(as shown in Fig. 9). The order to present the processed
videos is random.

• Each processed video is shown three times in three ses-
sions to the assessors (as shown in Fig. 10). The order
to present the processed videos in each session should
be different. Only the results in the last two sessions are
counted for final results. The first session is to stabilize
assessors’ grading.

The grading scheme for SS can have three different forms:

• Categorical grading. The assessors categorize the videos
into pre-defined categories. The category can be given
numerically (e.g., category “1”, “2”. . .,“10”) or ver-
bally (e.g., category “Excellent”, “Good”, “Fair”, “Poor”,
“Bad”).

• Numerical grading. The assessors give marks, for
example, 1 ∼ 100.

• Performance-based grading. While the above two methods
solicit assessors’ grading directly, the video quality can

Fig. 10. SS video/image presentation sequence option II.

be indirectly inferred by asking assessors to give video-
related information.

Compared with the Double-Stimulus (DS) method, the
Single-Stimulus method has the following advantages:

• For DS, if the source and processed videos are presented
simultaneously on split screens, the assessors attention
may be distracted [56].

• For DS, if the source and processed videos are presented
consecutively, more time is required for one pair of video
sequence. Since it is required that one session should
not exceed 30 minutes, the possible pairs of video se-
quences tested in one session have to be reduced. There-
fore, multiple sessions may be conducted, leading to the
problem of how to best combine the results from different
sessions.

4) Stimulus-Comparison (SC) Method: In the SC, two (pro-
cessed) videos are presented to the assessors, and the assessors
grade the relationship of the two videos. The grading scheme
for SC also has three different forms:

• Categorical grading. The assessors categorize the relation-
ship between the two videos into pre-defined categories.
The category can be given numerically (e.g., category
(the second video is) “−3, much worse”, “−2, slightly
worse”,. . .,“3, much better”) or verbally (e.g., category
“Same”,“Different”).

• Numerical grading. The assessors give (continuous)
grades, for example, 1 ∼ 100 to the difference degree of
the two videos.

• Performance-based grading. Assessors are asked to iden-
tify whether one video has more or less of a certain feature
than the other video.

C. Data Processing

Data processing includes checking data completeness,
screening the outliers and inconsistent assessors. To start with,
the assessors’ grading can be processed into two user score
metrics:

• Mean Opinion Score (MOS) is for the single-stimulus
tests. It is calculated as the average of the grades for
a processed video. MOS is often used to validate the
performance of the no reference objective quality models,
which will be introduced in Section IV.
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• Difference Mean Opinion Score (DMOS) is for the double
stimulus tests. It is calculated as the average of the arith-
metic difference between the grades given to the processed
video and the grades given to the source video. DMOS
is often used to validate full reference objective quality
models and reduced reference objective quality models,
which will be introduced in Section IV.

Then, the results should be screened as follows.

• Check the completeness of the data: whether an assessor
gives score to every video; whether an assessor grades both
source and processed video in the double stimulus score.

• Remove assessors with extreme scores (outliers).
• Remove assessors with unstable scores.

Check the data completeness is easy to do. Now we intro-
duce how to screen the outliers and inconsistent assessors in
more details. The basic assumption is that the data collected
from the subjective test follow a certain distribution within the
scoring range (e.g., 1 ∼ 5, or 1 ∼ 100), with variations due
to differences in assessors, video contents, and so on. Let OS
be the individual opinion score, i be the assessor index (a total
of I assessors), j be the test condition index (a total of J test
conditions), k be the video sequence index (a total of K video
sequences). First, let’s define some key parameters:

• Mean Score. The mean score for the jth test condition and
kth video sequence is

MOSjk =
1

I

∑
i

OSijk (1)

• Standard Deviation. The standard deviation of MOSjk is

Sjk =

√∑
i

(MOSjk −OSijk)2

I − 1
(2)

• 95% Confidence Interval. The 95% Confidence Interval of
MOSjk is

[MOSjk − δjk,MOSjk + δjk] (3)

in which δjk = 1.96Sjk/
√
I .

• Kurtosis Coefficient. The Kurtosis Coefficient, β2,jk, used
to verify whether the data distribution of the jth test
condition and kth video sequence is normal, can be
calculated as

β2,jk =
I
∑

i(MOSjk −OSijk)
4

[
∑

i(MOSjk −OSijk)2]
2 (4)

1) Data Screening for DS: The data screening for DS is
mainly to screen outliers, using algorithm 1. The detailed
explanation is as follows:

• Step 2: Verify whether the data distribution of the jth test
condition and kth video sequence is normal. If β2,jk ∈
[2, 4], the data distribution is regarded to be normal, other-
wise, it is not.

• Step 3 ∼ 16: Compare the individual user score
OSijk with two reference value MOSjk + 2Sjk and
MOSjk − 2Sjk for normal distribution, or MOSjk +√
20Sjk and MOSjk −

√
20Sjk for non-normal dis-

tribution. Individual user scores that are outside the
range [MOSjk + 2Sjk,MOSjk − 2Sjk] or [MOSjk +√
20Sjk,MOSjk −

√
20Sjk] will be recorded in Highi

and Lowi.
• Step 18∼21: Decide whether to remove assessor i or not

based on Highi and Lowi.

Algorithm 1 Data Screening for DS

1: for all i, j, k do
2: if β2,jk ∈ [2, 4] then
3: if OSijk ≥ MOSjk + 2Sjk then
4: Highi ++;
5: end if
6: if OSijk ≤ MOSjk − 2Sjk then
7: Lowi ++;
8: end if
9: else
10: if OSijk ≥ MOSjk +

√
20Sjk then

11: Highi ++;
12: end if
13: if OSijk ≤ MOSjk −

√
20Sjk then

14: Lowi ++;
15: end if
16: end if
17: end for
18: Ratio1 = Highi+Lowi

JK ;

19: Ratio2 =
∣∣∣Highi−Lowi

Highi+Lowi

∣∣∣
20: if Ratio1 > 0.05&&Ratio2 < 0.3 then
21: Remove assessor i;
22: end if

2) Data Screening for SS: The data screening for SS is
two-folds: to screen the outliers who deviate from the aver-
age behavior, and to screen the assessors whose behavior is
inconsistent. The difference between the screening process for
DS and for SS is: for DS, we test each (condition, sequence)
configuration; for SS, we test each (condition, sequence, time
window) configuration. Let m be the index of time window
(A total of M time windows).

• Screen outliers: also use Algorithm 1, but replace the
OSijk with OSijkm, and modify the Kurtosis Coefficient
β2,jkm and standard deviation Sjkm correspondingly.
Further make the changes Ratio1 = Highi

JKM in Step 18,
Ratio2 = Lowi

JKM in Step 19, and the condition for re-
moving assessor i is Ratio1 > 0.2 or Ratio2 > 0.2 in
Step 20.

• Screen inconsistent assessors
The variable under test is

ÕSijkm = OSijkm −MOSijk +MOSjk (5)
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in which

MOSjk =

∑
i

∑
m OSijkm

I ×M

MOSijk =

∑
m OSijkm

M
(6)

The corresponding Kurtosis Coefficient is

β̃2,jkm =
I
∑

i(ÕSijkm)4(∑
i ÕS

2

ijkm

)2 (7)

The screening process is: use Algorithm 1, but replace
OSijk with ÕSijkm, β2,jk with β̃2,jkm, and modify the
standard deviation S̃jkm correspondingly. Further make
the changes Ratio1 = Highi+Lowi

JKM in Step 18, Ratio2 =
|Highi−Lowi|
|Highi+Lowi| in Step 19, and the condition for removing
assessor i is Ratio1 > 0.1 or Ratio2 < 0.3 in Step 20.

D. Results Presentation

The final results should include the following:
• Test configuration;
• Test video sequences information;
• Types of video source;
• Types of display monitors;
• Number and demographic information of assessors;
• Reference systems used;
• The grand mean score for the experiment;
• The mean and 95% confidence interval of the statistical

distribution of the assessment grades.
A common data format is desirable for inter-lab data ex-

change, because usually large-scale subjective tests will be
carried out in different laboratories in different countries,
maybe with assessors speaking different languages.

E. Subjective Test for 3D Videos

In [60], the ITU gives the guidance for subjective test for
stereoscopic television pictures. Apart from the assessment fac-
tors for conventional monoscopic television pictures, there are
additional factors to be considered for stereoscopic television
pictures.

• Depth resolution and depth motion. Depth resolution is the
spatial resolution in the depth direction; and depth motion
is the movement along the depth direction.

• Puppet theater effect refers to the distortion in the repro-
duced 3D image, that the objects appear unnaturally large
or small.

• Cardboard effect refers to the distortion in the reproduced
3D image, that the objects appear unnaturally thin.

In [61], the authors argue that the subjective test specified
by the ITU may not simulate the home environment where the
actual viewing is happening. In the standard ITU subjective
test, short video sequences are often used, whose contents
may not be interested to the viewers. Therefore, in [61], the
authors propose to use long video sequences, with the test
methods shown in Fig. 11. The same long video is continuously
played with alternating processed and original segments, and

Fig. 11. Proposed 3D video evaluation method in [61].

assessors grade the video quality during the period when the
original(unprocessed) segments are being played.

F. Subjective Test Crowdsourcing

Conventionally, the subjective test is conducted in a lab
or several cooperating labs, which is labor-intensive, time-
consuming and expensive. A more cost-effective alternative
is to conduct subjective test through Internet crowdsourcing
platforms, such as Amazon Mechanical Turk (MTurk) [62].

One problem with the crowdsourcing subjective test is to
detect the outliers, because the online assessors are performing
the evaluation tasks without supervision. For example, if the test
lasts a long time and the assessors get impatient, they may input
random evaluations. In [63], the authors propose to verify the
consistency of the ratings based on the transitivity property, that
is, if the assessor prefers A to B, B to C, then he should prefer A
to C. But the method cannot work when the data is incomplete.
To solve this problem, the authors in [64] propose an outlier
detection algorithm based on Hodge Decomposition theory,
which is first proposed in [65] to check data consistency from
incomplete and imbalanced data. In [66], paired comparison is
proposed as a simpler rating scheme to replace MOS. In paired
comparison, the assessors are given a pair of images or videos,
and they only have to decide which one has better quality. A
cheat detection mechanism based on the transitivity property is
given to check and screen inconsistent assessment.

G. Discussion

Although the subjective test directly measures QoE by asking
assessors for their evaluations, it suffers from some significant
drawbacks:

• High cost. The subjective test is time-consuming, money-
consuming and manpower-consuming.

• Limited assessors. Usually, no more than 100 assessors are
involved in the subjective test due to its high cost. These
assessors can only represent the demographic features of a
very small fraction of the entire viewer population.

• Controlled environment. The subjective test is often con-
ducted in the laboratory environment, which is not the
usual place where the common viewers watch video. The
results may not be an accurate reflection of viewers’ true
viewing experience in the wild, where other factors, such
as delay, may also have an influence on QoE.

• Limited distortion types. The lab-processed distortion
types are representative but cannot account for all pa-
rameters that have an impact on the QoE. Some of the
conditions are hard to test in the laboratory environment,
such as transmission network induced delay and jitter, or
external factors such as different locations where viewers
watch the video.
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• Distortion factor correlation. One problem about video
processing is that many of the distortion factors are cor-
related in reality. Some combinations of factors would not
happen in the real environment. For example, if bitrate and
frame rate are chosen as distortion factors, it is unlikely
that the processing of (high bitrate, low frame rate) will
happen in real environment.

• Hard to account for frames of different importance in
a video. A video can be regarded as an aggregation of
images (or frames), whose quality can be assessed by both
double stimulus and single stimulus subjective tests. How-
ever, the quality of the video does not simply equal the sum
of the quality of all its images. For example, some frames
in a video is less visually important than others. More-
over, in video compression, certain frames (e.g., I-frame)
contain more information than others (e.g., P-frame and
B-frame).

• Not applicable for online QoE estimation. The subjective
test cannot be used for real-time QoE monitor or predic-
tion. Thus, it cannot provide instrumental guidance for
real-time system adaptation.

IV. OBJECTIVE QUALITY MODEL

To give relatively reliable QoE prediction but avoid the
necessity of doing subjective test, researchers develop objective
quality models. Objective quality models compute a metric as a
function of QoS parameters and external factors. The output
metric should correlate well with the subjective test results,
which serve as the ground truth QoE. In this section, we first
introduce representative objective quality models. Then, we
describe the process of validating the performance of objective
quality models. Finally, we introduce projects and international
standards for objective quality models.

In previous survey papers on objective quality models, there
are three major classification methods:

• The “psychophysical approach” and the “engineering ap-
proach” [47]. The two approaches are also termed as
vision-based model and signal-driven model in some ar-
ticles. The psychophysical approach is mainly based on
characterizing the mechanisms of the HVS, such as mask-
ing effect, contrast sensitivity, and adaptation to color
and illumination. The engineering approach is based on
extracting and analyzing certain distortion patterns or
features of the video, such as statistical features, struc-
tural similarity (SSIM) and compression artifacts (e.g.,
blockiness, edginess).

• Reference-based classification method [47]. Based on
whether the reference to the original video is needed,
the objective quality models are classified as Full Refer-
ence (FR) model, Reduced Reference (RR) mode and No
Reference (NR) model.

– Full Reference (FR) Model. Full access to the source
video is required.

– Reduced Reference (RR) Model. Partial information of
the source video is required.

– No Reference (NR) Model. No reference model does
not need the access to the source video.

The full reference and reduced reference models need to
refer to the original video for quality comparison and
assessment, making them less suitable for online QoE
estimation. They are “intrusive” models in the sense that
they insert additional load to the network or service [67].
No reference model is non-intrusive, adding no load to
the network or service, thus more suitable for online QoE
evaluation and system adaptation. When choosing a no
reference model or metric for online QoE evaluation, real
time performance and speed are also the deciding factors.

• Input data-based classification method [68]. Based on the
type of the input data, there are five categories of models:

– Media-layer models, whose input is the media signal.
– Parametric packet-layer model, whose input is the

packet header information.
– Parametric planning model, whose input is quality

design parameters.
– Bitstream layer model, whose input is packet header

and payload information.
– Hybrid model, the combination of any of the other

models.

The first two classification methods are most commonly
adopted, and often used to complement each other. In general,
psychophysical approach usually belongs to the FR, while
RR and NR are mostly based on the engineering approach.
Many survey papers mention both classification methods, but
usually follow one of them. For example, [32], [69] mainly
follow the psychophysical/engineering approach classification
method; [31], [70]–[72] mainly adopt the reference-based clas-
sification method, and [47] adopts a combination of the two.
The third classification methods is proposed in [68] and ref-
erenced in [31]. In [73], the objective models are classified as
pixel-based model (e.g., PSNR and MSE), vision-based single-
channel model, vision-based multi-channel model and special-
ized model, yet this is not a commonly adopted classification
method.

The main purpose of this tutorial paper is to introduce
the evolution of the video quality assessment methods on the
whole, and in particular, to point out potential future directions.
We will just adopt the existing classification methods for the
objective quality model. Fig. 12 gives a summary of the objec-
tive quality models that we mainly focus on. We use FR/RR/NR
as the first-tier classification, psychophysical/engineering ap-
proach as the second-tier classification, and other more specific
criterion as the third-tier classification. It should be noted that
some classification is non-exclusive. For example, similarity
structural (SSIM) is an engineering approach, but many vari-
ations of SSIM also incorporate psychophysical features in
the design. In this case, we still classify these variations as
engineering approach as their major basis is SSIM. We believe
that as the research on objective quality models advances, there
will be a need for an evolution of the classification methods, but
this is not the focus of this tutorial paper.
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Fig. 12. An overview of objective quality models.

TABLE V
PSYCHOPHYSICAL APPROACH MODELS

A. Full Reference Model

In this section, we mainly introduce three kinds of full
reference models: simple pixel-based models, psychophysi-
cal approach and engineering approach. In the engineering
approach, we further introduce models based on video arte-
facts, natural scene statistics (NSS) and structural similarity
(SSIM).

1) Pixel-based Models: Two most basic objective quality
models are Mean Squared Error (MSE) and Peak-Signal-
to-Noise Ratio (PSNR), which are simple to compute and
therefore usually serve as the benchmark for evaluating more
advanced models.

• MSE. MSE can be calculated as

MSE =
1

N

∑
i

(yi − xi)
2 (8)

in which xi is the ith sample of the original signal, and yi
is the ith sample of the distorted signal.

• PSNR. PSNR is defined as

PSNR = 10 log10
MAX

MSE
(9)

in which MAX is the maximum signal energy [74].

The advantage of pixel based model is simplicity. However,
neither model consider the features of the HVS and view-
ing conditions, and are poorly correlated to subjective results
[75]–[77].

2) Psychophysical Approach: Objective quality models of
the psychophysical approach are based on the features of
the HVS, which is related to visual perception, for instance,
contrast sensitivity, frequency selectivity, spatial and temporal
features, masking effects, and color perception [72]. Table V
gives a summary of the psychophysical approach models. Note
that the performance factors given in the table are highly
dependent on the database used for evaluation and different
model parameters; the values provided in the table only serve
as a reference.

• Moving Picture Quality Metric (MPQM)
MPQM is based on two features of human perception:
contrast sensitivity and masking effect [36]. Contrast sen-
sitivity means that a signal is visible only if its contrast is
higher than a detection threshold, which is a function of
spatial frequency. The inverse of the detection threshold is
defined as the contrast sensitivity, which is usually denoted
by the Contrast Sensitivity Function (CSF). The contrast
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Fig. 13. Flow of MPQM.

sensitivity function proposed by Manos and Sakrison
is [83]

A(f)=2.6(0.0192 + 0.114f) exp
[
−(0.114f)1.1

]
=

1

D0
(10)

in which f is the spatial frequency, D0 is the detection
threshold of the distortion without masking effect. One
of the characteristics of the HVS is contrast masking: the
visibility of a signal is highly affected by its background.
The detection threshold of the foreground signal is a
function of the contrast of the background. The distortion
can be viewed as the foreground signal on the background
original image. The foreground distortion may be highly
visible, or partly/completely masked by the background
original image. Let D denote the detection threshold of the
distortion with the masking effect, Cb denote the contrast
of the background. The masking effect model gives the
following function of the D depending on D0 and Cb:

D =

{
D0, Cb < D0

D0

(
Cb

D0

)η

, Cb ≥ D0
(11)

in which η is a constant parameter. Fig. 13 shows the flow
of calculating the MPQM metric. The thick lines represent
multi-channel output or input. Firstly, the original video
and the error signal (the difference between the original
and distorted videos) go through the filter bank, which
decomposes them into multiple channels according to
the orientation, spatial frequency and temporal frequency.
Secondly, the detection threshold under the masking effect
is calculated according to (10) and (11), for each channel.
Thirdly, the error signal is divided by the detection thresh-
old to get the Just Noticeable Difference (JND), which
will be pooled over all channels by Minkowski summation
(with exponent β) to get the final metric as follows:

MPQM =

⎛⎝ 1

N

N∑
f=1

(
1

NxNyNt

∑
x,y,t

|e(x, y, t, f)|
)β

⎞⎠ 1
β

(12)

in which e(x, y, t, f) is the computed JND at position
(x, y), time t and channel f .

• Digital Video Quality (DVQ)
DVQ calculates the visual difference between the origi-
nal and distorted video sequences using Discrete Cosine
Transform (DCT). It incorporates spatial and temporal

Fig. 14. Flow of DVQ.

filtering, spatial frequency channels and contrast masking
[41], [42]. The flow of calculating DVQ is illustrated
in Fig. 14. Pre-processing includes sampling, cropping,
and color transformations to restrict the later processing
into the Region of Interest (RoI). Then, blocked DCT is
performed on the processed video sequence. Local con-
trast is obtained by dividing the DCT coefficient with the
DC coefficients. Temporal filtering and JND conversion
implement the temporal and spatial feature of the CSF re-
spectively. After the contrast masking process, the results
are pooled by Minkowski summation as in (12).

• Perceptual Video Quality Measure (PVQM)
PVQM calculates the following three indicators:

– Edginess indicator E. HVS is sensitive to the edge
and local luminance change. The local edginess can be
approximated by the local gradient of the luminance
signal. The difference between the edginess of the
distorted video and the original video can be viewed as
sharpness loss (if the edginess of the distorted video is
smaller) or distortion (if the edginess of the distorted
video is higher). The introduced edginess difference
is more obvious in areas with less edginess than in
areas with much edginess. The edginess indicator is
the local edginess of the distorted video minus the
local edginess of the original video, then divided by
the local edginess of the original video.

– Temporal indicator T . While edginess indicator is a
pure spatial indicator mostly for still images, the tem-
poral indicator characterizes the motion of the video
sequence. The fast-moving sequence will decrease
visual sensitivity in details. Temporal indicator quan-
tifies the temporal variability of the video sequence by
calculating the correlation of the current frame (t) and
the previous frame (t− 1).

– Chrominance indicator C. Color errors in areas with
saturated colors are less perceptible to the HVS.
Chrominance indicator calculates the color saturation
of the original and distorted videos.

Two cognitive models are further applied for pooling the
above indicators from both spatial and temporal aspects:

– Spatial pooling. Errors on the edge are less disturbing
than those in the central area, therefore, the edginess
indicator and the chrominance indicator are given
heavier weights in the center of the image and lighter
weights on the bottom and top.
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Fig. 15. Flow of VSNR.

– Spatio-temporal pooling. HVS punishes more severe
errors. Therefore, large local spatial and temporal er-
rors are given heavier weights.

The final PVQM is the linear combination of the three
indicators after aggregation.

PV QM = 3.95E + 0.74C − 0.78T − 0.4 (13)

• Visual Signal-to-Noise Ratio (VSNR)
The VSNR determines near-threshold and suprathreshold
distortions in two stages, as shown in Fig. 15. For pre-
processing, the original image S and distorted image D
are decomposed by M -level DWT to obtain two sets of
3M + 1 subbands. Then, the assessment goes through two
stages. In the first stage, near-threshold distortion is con-
sidered. Low-level HVS properties are used to determine
whether the distortion is beyond the threshold: if not,
the image is assessed to have perfect visual fidelity, thus
V SNR = ∞; otherwise, the image will be put through
the second stage. In the second stage, suprathreshold dis-
tortion is considered. Both low-level and mid-level HVS
properties are used to compute the final VSNR value.

– Stage I: Near-Threshold Distortion
Whether an observer can detect the distortion de-

pends on the spatial frequency of the image, which
depends on the viewing conditions: the resolution of
the display r and the viewing distance d. M -tuple
frequency vector f = [f1, . . . , fm, . . . , fM ] can be
computed as

fm = 2−mrd tan
π

180
(14)

To decide whether the distortions are visually percep-
tible, the contrast detection threshold for a particular
frequency f is calculated as follows:

Tm =
C(Sf )

a0fa2 ln f+a1
(15)

in which C(·) is the root-mean-square (RMS) contrast
function [84]; a0, a1, a2 are parameters that can be
obtained from experiment. If, for any subband fm, the
distortion contrast is less than the threshold Tm, assign
V SNR = ∞ and the assessment process terminates.
If, for a particular fm the distortion contrast C(Em)
exceeds the threshold Tm, Stage II is processed for
further assessment.

– Stage II: Suprathreshold Distortion
The assessment of suprathreshold distortion is based

on Global Precedence, a mid-level HVS property (see
Section II). The principle of Global Precedence is, the
HVS processes the image in a coarse-to-fine-grained
manner: from the global structuring to the local details
[85]. It is found in [86] that “structural distortion”
that affects the global precedence is most perceptible;
while additive white noise, which is uncorrelated with
the image, is least perceptible. The global precedence-
based VSNR is computed as

V SNR = 20 log10
C(S)

αC(E) + (1− α)GP/
√
2

(16)

in which α ∈ [0, 1] is to adjust the relative importance;
C(S) and C(E) are the sum of C(Sm) and C(Em),
respectively; GP is the global precedence disruption
given as follows:

GP =

√∑
m

[C∗(Em)− C(Em)]2 (17)

in which C∗(Em) is the global-precedence preserving
contrast.

• MOSp
MOSp is a simple and easy-to-compute metric, which
is based on the linear relationship between MSE and
subjective results.

MOSp = 1− k ·MSE (18)

in which k is the slope of the linear regression and the key
element of MOSp. Due to the masking effect, distortions
in highly detailed regions are less visible than those in low
detailed regions. Therefore, k is calculated as follows:

k = 0.03585 exp(−0.02439 ∗ EdgeStrength) (19)

in which EdgeStrength is used to quantify the detail
within a region.

• Attention-Driven Foveated Video Quality Metric (AFViQ)
AFViQ models the contrast sensitivity of the HVS based
on the mechanisms of vision foveation and visual atten-
tion. The vision foveation refers to the fact that the HVS
perceives different amount of detail, or resolution, across
the area of view, with highest resolution at the point of
fixation. The point of fixation is projected onto the center
of the eye’s retina, i.e., the fovea [99]. Different from
existing quality metrics based on static foveated vision
[99]–[101], AFViQ simulates the dynamic foveation by
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TABLE VI
ENGINEERING APPROACH MODELS

predicting video fixation based on eye movement. Given
the traditional critical frequency fc (beyond which the
contrast change is imperceptible by the HVS) given in
existing work [102], the adjusted critical frequency f ′

c for
a moving object is:

f ′
c = fc

vc
| cos θ · vr|+ vc

(20)

in which vc = 2 deg/sec is the corner velocity, vr is the
difference between the velocity of the moving object and
the eye movement, and θ is the retinal velocity direction.
Moreover, the HVS has different attention towards differ-
ent objects. The critical frequency of the different parts of
the video can be adjusted by the attention map [103].

f ′′
c = f ′

c [ρ+ (1− ρ)AM ] (21)

in which AM is the attention map, ρ ∈ [0, 1] is a control
parameter. Then the contrast sensitivity for a given spatial
frequency sf is:

CS(sf) =

{
f ′′
c , f ≤ f̂

0, f > f̂
(22)

in which f̂ = min(f ′′
c , r/2), r is the effective display

visual resolution [104].
The predicted perceived quality at the frame level is:

Qframe = SD · TD (23)

in which SD is spatial distortion index and TD is tem-
poral distortion index. Both SD and TD are a function
of CS(sf). Then the video sequence is partitioned into
segments based on saccade duration, since the HVS has
no visual detectability during the saccadic eye movement.
The quality metric for Qsegment is derived by a short-
term spatial-temporal pooling. Finally, the overall quality
metric for the entire video Qvideo is derived by a long-term
spatial-temporal pooling.

3) Engineering Approach: In this section, we first introduce
engineering approach models which are based on modeling one
or more video artefacts such as blockiness, edginess and blur;
then we present a well-known NSS-based model; finally, we
focus on an important branch of engineering approach models
based on structural similarity. Table VI gives a summary of the
engineering approach models.

Video Artefacts based Models:

• Low-Bitrate Video Quality Model (LVQM)
Noting that pixel-wise error measurements (e.g., MSE,
PSNR), used for TV types of video, are unsuitable for
videos encoded at a low bitrate, LVQM is proposed and
evaluated on QCIF and CIF videos encoded by MPEG-4
with bitrates ranging from 24 kbps to 384 kbps and frame
rates ranging from 7.5 Hz to 30 Hz. LVQM incorporates
three aspects:

– Distortion-invisibility D. Subject to luminance mask-
ing, spatial-textural masking, and temporal masking,
distortions below the detection threshold are deemed
invisible. Distortions greater than the detection thresh-
old are incorporated into D.

– Block fidelity BF . At low bitrate, lossy block-based
video compression will introduce distortions at block
boundaries. Block fidelity computes the difference
between the distorted video and the original video at
block-boundaries.

– Content richness fidelity RF . The HVS favors lively
and colorful images. RF compares the content rich-
ness of the distorted video and the original video in
terms of luminance occurrences.

The final quality rating is:

LV QM =

∑
t D(t) ·BF (t) ·RF (t)

Nt
(24)

• KVQM
KVQM metric is the linear combination of three factors:

– Fedge quantifies the edge features, with the help of
an edge detection algorithm and an edge boundary
detection algorithm.

– Fblock quantifies the distortions at the block boundary,
with the help of a block boundary detection algorithm.

– Fblur quantifies blur distortion of the image, by calcu-
lating the differences of the average gradients of the
distorted and original images.

The flow of computing the KVQM is shown in Fig. 16.
The edge detection algorithm extracts edge pixels, and the
edge detection algorithm extracts pixels adjacent to the
edge pixels, both from the original image, since the edges
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Fig. 16. Flow of KVQM.

Fig. 17. Flow of MOVIE.

of the distorted image may suffer from blur or other degra-
dation. The block boundary detection algorithm detects
blockiness at block boundaries in the distorted image.
The gradient feature is the difference between the average
gradients of the original image and the distorted image. It
quantifies the blur factor. Then KVQM is calculated as the
weighted sum of the three factors.

KVQM = w1Fedge + w2Fblock + w3Fblur + offset (25)

in which w1, w2, and w3 are the weights for each factor;
offset is the residual of the regression.

• MOtion-Based Video Integrity Evaluation (MOVIE)
The MOVIE index assesses the video distortions not only
separately in space domain and time domain, but also
in space-time domain, characterizing the motion quality
along the motion trajectories. Fig. 17 shows how to cal-
culate the MOVIE index. The original video and distorted
video signals first go through the Gabor filter to model the
linear filtering function of the HVS. Let i = (x, y, t) de-
note a spatio-temporal location; R(i, k) denote the Gabor
filtered original video signal, and D(i, k) denote the Gabor
filtered distorted video signal, in which k = 1, 2, . . . ,K
is the index of Gabor filters. The decomposed signals are
then used to estimate motion and compute spatial and
temporal MOVIE indexes.

– Spatial MOVIE Index
Local spatial movie index is computed for a reference
location i0, with N sample signals within a window

centered at i0:

QS(i0) = 1− PES(i0)/K + EDC(i0)

P + 1
(26)

in which ES is the error index of the Gabor sub-band
and EDC is the error index of the Gaussian sub-band.
P is the scale of Gabor filters, K is the number of
Gabor filters. ES(i0, k) is calculated as

ES(i0) =
1

2N

∑
k

∑
n

[
R(in, k)−D(in, k)

C1 + E(i0, k)

]2
(27)

in which E(i0, k) measures the local energy. EDC(i0)
is calculated in a similar manner.

– Motion estimation
Motion information is extracted from the original
video based on the Fleet and Jepson algorithm [105];
and is used for the temporal MOVIE calculation.

– Temporal MOVIE Index
The idea of temporal MOVIE index is to compute a
weighted sum of the Gabor filtered signals: if the dis-
torted video has the same motion (speed and direction)
as the original video, the weight is strongly positive,
vice versa.

QT = 1− 1

N

∑
n

(
vrn − vdn

)2
(28)

in which vrn is the response of the original video to a
mechanism that is tuned to its own motion, and vdn is
the response of the distorted video to a mechanism that
is tuned to the motion of the original video.

– Error pooling
Frame level spatial and temporal MOVIE is

FS =
δQs

μQs

, FT =
δQT

μQT

(29)

in which δ is the standard deviation and μ is the mean.

The final MOVIE index is

MOV IE =
1

M

∑
m

FS(tm) ·
√

1

M

∑
m

FT (tm) (30)

in which M is the number of frames.
NSS Based Models: Image and video are natural scenes,

of which the statistical information is different from random
signals. However, the compression artefacts will result in un-
naturalness. Natural Scene Statistics models [107], [108], com-
bined with distortion models, can better quantify the statistical
information difference between the original and the distorted
videos. Here, we introduce VIF, a widely cited NSS-based
model.

• Video Visual Information Fidelity (VIF)
Video VIF evaluates visual fidelity by comparing the
information that can be extracted by the brain from the
original video and the distorted video [97], as shown in
Fig. 18. In the upper path in Fig. 18, the original video
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Fig. 18. Flow of video VIF.

first passes through the distortion channel, then passes
through the HVS, resulting in the distorted video. In the
lower path in Fig. 18, the original video directly passes
through the HVS, resulting in the reference video. The
quality of the video can be represented by the amount of
information that the brain can extract from the video. Let
S represent the original video, D represent the distorted
video, R represent the reference video.

R =S +N
D = aS + B +N′ (31)

in which N and N′ are the visual noises from the HVS
channel, which can be approximated as additive white
Gaussian noise. The response of the distortion channel is
aS + B, in which a = {ai, i ∈ I} is a deterministic scalar
gain (I represents all the spatiotemporal blocks), B is a
stationary additive zero-mean Gaussian noise. This simple
model is proved to be effective in modeling the noise (by
B) and blur (by a) effects in the distortion channel.

For one channel, the information that can be extracted
from the reference and distorted video is as follows:

IR =
1

2

∑
i∈I

log2

(
1 +

s2i
δ2n

)

ID =
1

2

∑
i∈I

log2

(
1 +

a2i s
2
i

δ2b + δ2n

)
(32)

in which ai is the distortion gain of the ith spatiotemporal
block, si is the ith original spatiotemporal block, δb and δn
are the variances of the distortion noise B and HVS noise
N respectively.

The video VIF is defined as the information that can
be extracted from the distorted video and that from the
reference video of all channels.

V IF =

∑
all channels

ID∑
all channels

IR
(33)

Structural Similarity Based Models: The objective of the
structural similarity based models is to measure the similarity
(fidelity) between the original video and the distorted video,
based on the knowledge of the transmitter, channel and the
receiver [109]. Table VII shows the examples of widely-used
structural similarity based models.

• Structural SIMilarity (SSIM)
SSIM is first proposed in [76], then developed in [33],
on the basis that HVS is highly developed to capture

the “structure” of the image. Therefore, SSIM measures
the “difference of structure” between the original image
and the distorted image, by taking into consideration the
following three factors: luminance, contrast and structure.
The luminance and contrast are mostly affected by the
illumination of the environment, while the structure is the
intrinsic feature of the object. Let x = {xi, i ∈ I} and y =
{yi, i ∈ I} denote the original and the distorted signals. I
is the set of spatiotemporal blocks.

– Luminance is represented by the mean of the signal.
μx =

∑
i xi, μy =

∑
i yi. The luminance index is

l(x, y) =
2μxμy + C1

μ2
x + μ2

y + C1
. (34)

in which C1 is included to avoid near-zero de-
nominator.

– Contrast is represented by the standard devia-
tion of the signal. δx =

√
(xi − μx)2/(I − 1), δy =√

(yi − μy)2/(I − 1). Therefore, the contrast index is

c(x, y) =
2δxδy + C2

δ2x + δ2y + C2
(35)

in which C2 is included to avoid near-zero de-
nominator.

– Structure. The index to quantify the structural simi-
larity is

s(x, y) =
δxy + C3

δxδy + C3
(36)

in which δxy =
∑

i(xi − μx)(yi − μy)/(I − 1), C3 is
included to avoid near-zero denominator.

In [76], when the SSIM was first proposed, the parame-
ters C1, C2, and C3 are excluded. But very soon they were
added, because if C1 = C2 = C3 = 0, the results become
unstable when μ2

x + μ2
y or δ2x + δ2y are close to zero. The

SSIM index is then calculated as

SSIM(x, y) = [l(x, y)]α [c(x, y)]β [s(x, y)]γ (37)

in which α, β, and γ are constant parameters. The SSIM
index has the following ideal properties:

– Symmetric: SSIM(x, y) = SSIM(y, x).
– Bounded: SSIM(x, y) ≤ 1.
– Unique Maximal: SSIM(x, y) is the maximum only

when x = y.

SSIM is calculated locally as in (37) for an 8 × 8 square
window, which moves pixel-by-pixel to cover the whole
image, resulting in an SSIM map. To avoid “blocking”,
the calculation of mean and standard deviation is weighted
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TABLE VII
STRUCTURAL SIMILARITY BASED MODELS

by a circular-symmetric Gaussian weighted function
w = {w1, w2, . . . , wI}:

μx =
∑
i

wixi

δx =

√∑
i

wi(xi − μx)2

δxy =
∑
i

wi(xi − μx)(yi − μy) (38)

The SSIM index for the whole image is

SSIM(X,Y ) =
1

N

∑
j

SSIM(xj , yj) (39)

in which N is the number of windows, and xj , yj are the
signals at the jth window.

• Muti-Scale SSIM
Viewer’s perceptibility of image details relies on the
viewing conditions, such as the sampling density of the
image, the distance between the viewer and the image,
and the perceptual ability of the viewer’s HVS. So, to
choose the right scale on which to evaluate the perceptual
quality is difficult. The single-scale SSIM is, therefore,
extended to multi-scale SSIM [43], summing up the
influence of each scale with different weights to account
for their relative importance. Assume there are K intended
scales. The original and distorted images are repeatedly
processed by a low-pass filter, which downsamples the
image by a factor of 2. The number of repetition is K.
At the jth scale, the contrast index cj(x, y) and structure
index sj(x, y) are computed; while the luminance index
of the last iteration lK(x, y) is computed. Multi-scale
SSIM is then calculated as:

SSIM(x, y) = [lK(x, y)]αK ΠK
j=1 [cj(x, y)]

βj [sj(x, y)]
γj

(40)

in which αj , βj , γj can be adjusted for different
importance of each scale. In fact, the challenge of
the method lies in determining the value of αj , βj , γj , j ∈
[1,K] and the number of scales K. One way is to refer to

Fig. 19. Flow of video SSIM.

the contrast sensitivity function (CSF) of the HVS [110],
another way is to calibrate the values via subjective test.

• Video SSIM
The SSIM for image is extended to SSIM for video
sequence in [87]. The procedure of calculating the video
SSIM is shown in Fig. 19.

– Local Level SSIM is calculated for random sampled
8 × 8 windows in each frame, according to (37). The
selection of windows is unlike that in image SSIM
calculation, which exhausts all possible windows by
moving pixel-by-pixel over the entire image. In video
SSIM calculation, the number of sampled windows
for each frame should consider both computational
complexity and evaluation accuracy. Local SSIM for
Y, Cb and Cr color components are calculated and then
combined as (the jth window of the ith frame):

SSIMij = WY SSIMY
ij +WCbSSIMCb

ij +WCrSSIMCr
ij

(41)

in which WY , WCb, and WCr are weights for Y, Cb
and Cr color components.

– Frame Level SSIM is calculated as the weighted sum of
the local level SSIM. The weight given to each local
level SSIM is based on its luminance. High weights
are given to high-luminance regions as they are more
likely to attract fixation. Frame level SSIM for the ith
frame is:

SSIMi =

∑
j wijSSIMij∑

j wij
(42)
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in which the value of wij is determined as

wij =

{ 0, μx ≤ 40
(μx − 40)/10, 40 < μx ≤ 50
1, μx > 50

(43)

in which μx is the mean of the Y components.
– Sequence Level SSIM is calculated as the weighted

sum of the frame level SSIM. The weight given to each
frame level SSIM is based on its motion with respect to
the next frame. Low weights are given to large-motion
frames as the experiments show that SSIM performs
less stable with large-motion frames. A motion-related
parameter Mi is defined as Mi =

∑
j mij/(16Ni), in

which mij is the motion vector of the jth window and
Ni is the number of sampled windows in the ith frame.
Sequence level SSIM is:

SSIM =

∑
i WiSSIMi∑

i wi
(44)

in which the value of Wi is determined as

Wi =

⎧⎨⎩
∑

j wij , Mi ≤ 0.8
(3− 2.5Mi)

∑
j wij , 0.8 < Mi ≤ 1.2

0, Mi > 1.2
(45)

• Spatial Weighted SSIM
In stead of giving equal weight to local level SSIM in (39),
three spatial weighting methods are proposed in [90].

– Minkowski weighting gives high weights to windows
with large distortions since the HVS is more sensi-
tive towards poor quality. The Minkowski weighted
SSIM is:

SSIMMinkowski =
1

N

∑
j

SSIMp
j (46)

in which p is the Minkowski power.
– Local quality weighting also gives high weights to the

windows with large distortions or poor qualities, but
through a function of the local quality index, which is
more flexible than the Minkowski weighting. The local
quality weighted SSIM is:

SSIMQuality =

∑
j f(SSIMj)SSIMj∑

j f(SSIMj)
(47)

in which f(·) is a (monotonic) function based on the
local SSIMj .

– Information content weighting also gives high weights
to the windows with large distortions or poor qualities,
but through a function of the local quality index. The
information content weighted SSIM is:

SSIM Information =

∑
j g(xj , yj)SSIMj∑

j g(xj , yj)
(48)

in which g(xj , yj) is a function of the signal of the
original image xj and the signal of the distorted image

Fig. 20. Bayesian human visual speed perception model.

yj . In [89], the weighting function g(xj , yj) character-
izes the local energy

g(x,y) = δ2x + δ2y + C (49)

in which C is included to account for near-zero δ2x +
δ2y . In [90], the weighting function g(xj , yj) is defined
based on the received information

g(x,y) = log

[(
1 +

δ2x
C

)(
1 +

δ2y
C

)]
(50)

• Speed Weighted SSIM
Different from a set of still images, the video sequence
contains motion information, which is used to adjust the
SSIM in [106]. The basis of the speed weighting adjust-
ment is the Bayesian human visual speed perception model
[111], as shown in Fig. 20. The original video passes
through the noisy HVS channel, to get the noisy internal
estimation of the motion, which is then combined with
prior probability distribution of the speed of motion, to
get the final estimated speed. Two kinds of speed are con-
sidered: vg , the background speed, and vm, the absolute
speed subtracting vg. vm can be viewed as the motion of
the moving object. The perception of the speed includes
the following two aspects:

– Information Content. High-speed motion acts as a
surprisal for the human vision, and is likely to attract
more attention. The prior probability distribution of
vm is assumed to be τ/vαm (τ and α are two positive
constants). The information content is computed as the
self-information of vm.

I = α loge vm − loge τ (51)

The information content increases with the speed of
the object, which is reasonably true.

– Perception Uncertainty. The perception uncertainty is
determined by the noise in the HVS channel. As shown
in Fig. 20, given the true speed (approximated by
vg), the likelihood of the internal noise e follows a
log-normal distribution. The perception uncertainty is
computed as the entropy of this likelihood function.

U = loge vg + β (52)



1144 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 2, SECOND QUARTER 2015

Fig. 21. Flow of PF/FP-SSIM.

in which β is a constant. The perception uncertainty
increases with the background speed, meaning that
the HVS channel cannot accurately process the video
information, if the background motion is too fast.
β decreases in video contrasts, meaning that high-
contrast videos yield less uncertainty through the HVS
channel.

Information content contributes to the importance of
a visual stimulus, while the perception uncertainty re-
duces its importance. Hence, the speed-related weight is
represented as w = I − U , and speed weighted SSIM is
calculated as

SSIMspeed =

∑
x

∑
y

∑
t w(x, y, t)SSIM(x, y, t)∑

x

∑
y

∑
t w(x, y, t)

(53)

in which SSIM(x, y, t) is the SSIM index of the spa-
tiotemporal region (x, y, t).

• PF/FP-SSIM
PF/FP-SSIM is a combination of visual fixation
weighted SSIM (P-SSIM) and quality weighted SSIM
(F-SSIM) [91], as shown in Fig. 21. The weight for a local
SSIM is determined by its visual importance.

– Visual fixation weighted SSIM (F-SSIM). The areas
which attract most human attention and the eyes fix
upon, are more important. For each image, ten fixation
points are chosen according to the Gaze-Attentive
Fixation Finding Engine (GAFFE) algorithm [112],
then the fixation areas are determined by a 2-D
Gaussian function. The pixels within the fixation areas
are given weight wf > 1, while other pixels are given
weight wf = 1. The F-SSIM of the jth window is
obtained by:

F − SSIMj =

∑
x∈J

∑
y∈J SSIM(x, y)wf (x, y)∑
x∈J

∑
y∈J wf (x, y)

(54)

For multi-scale SSIM, the number of fixation points
and the size of fixation areas reduce with the scale
level.

– Quality weighted SSIM (P-SSIM). The areas with
“poor” quality are easier to capture attention than areas

with “good” quality. Therefore, the “poor” quality
areas hurt the perceptual quality more than the “good”
quality areas improve the perceptual quality. Rank the
quality of all windows according to their quality in as-
cending orders; then assign weight wp > 1 to the low-
est p% items, and assign weight wp = 1 to others. In
[91], p = 6 yields good results. For multi-scale SSIM,
only the second scale image is given the weight wp.

– PF/FP-SSIM. The PF-SSIM is obtained by first apply-
ing the quality weighting to get P-SSIM, then visual
fixation weighting to get FP-SSIM. The FP-SSIM is
obtained by first applying the visual fixation weighting
to get F-SSIM, then quality weighting to get PF-SSIM.
F-SSIM and P-SSIM can also be computed separately.

Unfortunately, the experiments show that only the
P-SSIM gives significant improvements over the non-
weighted SSIM [91].

B. Reduced Reference Model

We mainly introduce two kinds of reduced reference models:
one is based on packet loss visibility (PLV), the other is based
on natural scene statistics.

1) Packet Loss Visibility Based Model: Packet loss visibility
based models indirectly measure the loss of video quality by
measuring the visibility of the packet loss. The major problem
is to classify what kind of packet loss is visible and what kind of
packet loss is invisible. Therefore, different classification tech-
niques and different packet types have been explored to improve
the classification accuracy. Table VIII gives a summary of the
packet loss visibility based RR models. Packet loss visibility
based models usually process as follows. Firstly, subjective
tests are conducted, in which assessors are asked whether they
see artifacts in the displayed video. Then, classification algo-
rithms (known as classifier) are applied to classify packet loss
into visible or invisible classes, or the regression models are
applied to predict the probability of packet loss visibility, using
the subjective test results as the ground truth, and objective
quality metrics as features.

In [113] and [114], the location of the packet loss and the
content of the video are considered as the major factors that in-
fluence the visibility of the packet loss. The following objective
quality metrics are specified to characterize the location of the
packet loss and the content of the video:

• Content-independent factors

– Temporal duration, that is, the number of frames af-
fected by the packet loss. If the packet loss occurs in
a B-frame, the influence will last only a single frame,
however, if the packet loss occurs in an I-frame, the
influence will last until the next I-frame.

– Initial spatial extent, that is, the number of slices lost.
Due to a single packet loss, the decoder may have to
abandon one slice, double slices or the entire frame.

– Vertical position, that is, the index of the topmost
slice affected by the packet loss. In a frame, from the
top to the bottom, slices are indexed from 0 to 29.
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TABLE VIII
PACKET LOSS VISIBILITY BASED MODELS

TABLE IX
NSS BASED RR MODELS

The location of the affected slice is considered since
different regions of the picture capture different de-
grees of viewers’ attention.

Content-independent factors do not rely on video content,
and can be extracted from the distorted videos.

• Content-dependent factors:

– Variance of motion and residual energy. These fac-
tors characterize the motion information of the video,
which may mask the error and influence the visibility
of the packet loss.

– Initial Mean Square Error, is the mean square error per
pixel between the decoded videos with and without
packet loss, only considering the pixels in lost slices.

Content-dependent factors can be estimated with the help
of reduced information of the original videos from the
encoder.

In [113], tree-structured data analysis based on Classification
And Regression Tree (CART) [120], is used to classify the
visibility of the packet loss. However, using tree-structured
data analysis is hard to distinguish the packet loss visibility
near the threshold and far from the threshold. Therefore, in
[114], a Generalized Linear Model (GLM) [121] is used to
predict the probability that the packet loss is visible to the
viewer. Also, in [114], two NR models are developed, in which
the content-dependent factors are estimated from the distorted
video. In [115], both CART and GLM are adopted and their
performances are compared. More objective quality metrics
are considered in [115], including: type of the frame in which
packet loss occurs, the magnitude and the angle of the motion.
[116] extends [115] in two ways: H.264 is considered in stead
of MPEG-2; multiple packet loss is considered in stead of

isolated packet loss. Multiple packet loss is considered because
packet loss is usually bursty, and multiple packet loss may
correlate with each other. More specifically, in [116], dual
packet loss is considered, characterized by spatial and temporal
separation of the two packet losses. In [117], SSIM is adapted
for RR and NR models to predict the visibility of packet loss
(SSIM is originally an FR model). In [118], scene-level factors,
specifically camera motion and proximity of a scene cut, are
considered, and the Patient Rule Induction Method (PRIM) is
used to decide visibility of a packet loss. It is found that global
camera motion will increase the packet loss visibility compared
with a still camera, and packet loss near the scene cut is less
invisible. In [119], different Group-of-Picture (GoP) structures
(e.g., IBBP) are considered for prediction, and the model is
applied to packet prioritization for the router to decide which
packets to drop when the network is congested.

One of the problems of the PLV based models is that quality
degradation is simply classified as visible or invisible, without
further quantification of how severe the quality degradation
is. PLV based models may be used for preliminary quality
evaluation.

2) NSS Based Model: The NSS based models assume that
the real-world image and video are natural scenes, whose statis-
tical features will be disrupted by distortions. The comparison
of the statistics of the original image and the distorted image can
be used to quantify the quality degradation. Survey paper [133]
offers a nice introduction of NSS based RR and NR models.
Table IX gives a summary of the NSS based RR models. In this
section, we introduce WNISM, recognized as the standard NSS
based RR model proposed by [122].

Let p(x) and q(x) be the probability density functions of the
wavelet coefficients in the same subband of the original image
and distorted image respectively. According to the law of large
numbers, the difference of log-likelihood between p(x) and
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q(x) asymptotically approaches the Kullback-Leibler distance
[134] between p(x) and q(x), denoted by d(p‖q).

d(p‖q) =
∫

p(x) log
p(x)

q(x)
dx (55)

While q(x) can be easily extracted from the distorted image at
the receiver, p(x) should be extracted from the original image,
and transmitting p(x) as an RR feature is costly. Fortunately,
it is found that p(x) can be approximated by a 2-parameter
generalized Gaussian density model (GGD) as:

pm(x) =
β

2αΓ (1/β)
e−(|x|/α)β (56)

where Γ(·) is the Gamma function. Also, the KLD between
pm(x) and p(x) is computed as

d(pm‖p) =
∫

pm(x) log
pm(x)

p(x)
dx (57)

For each subband, based on the RR feature {α, β, d(pm‖p)},
the KLD between p(x) and q(x) can be approximated as

d̂(p‖d) = d(pm‖q)− d(pm‖p) (58)

in which d(pm‖q) can be calculated at the receiver side as

d(pm‖q) =
∫

pm(x) log
pm(x)

q(x)
dx (59)

Finally, aggregate the distortions in all subbands and the
overall distortion metric can be obtained as:

D = log2

(
1 +

1

D0

K∑
k=1

∣∣∣d̂k(pk‖qk)∣∣∣) (60)

in which D0 is a constant parameter; pk and qk are the proba-
bility density functions of the kth subband of the original image
and distorted image respectively; and d̂k is the KLD estimation
between pk and qk.

In [123], the authors introduced the concept of quality-aware
image, in which the RR information is encoded as invisible
hidden messages. And after decoding, these hidden messages
can help compute the quality metric. In [124], it is noted
that linear image decomposition, such as wavelet transforma-
tion, cannot reduce statistical dependence between neuronal
responses. Therefore, divisive normalization transform (DNT),
a nonlinear decomposition, is leveraged as the image represen-
tation. Instead of using KLD, in [126], the quality metric is
computed as the average difference between scaled entropies of
wavelet coefficients of original image and distorted image. In
[127], Tetrolet transform for both original image and distorted
image is used to better characterize local geometric structures.
Subbands are modeled by Gaussian Scale Mixture (GSM)
to account for the statistical dependencies between tetrolet
coefficients. In [125], coefficients with maximum amplitude,
instead of all coefficients, are used to get the RR metric by
fitting them with a Weibull distribution. In [128], an SSIM-like
metric largely based on [124], [133] and structural similarity is
developed.

Apart from the above mentioned PLV based and NSS based
RR models, there are some other models that are worthy of not-
ing. In [135], the blockiness and blurriness features are detected
by harmonic amplitude analysis, and local harmonic strength
values constitute the RR information for quality estimation. In
[136], [137], the RR models are based on the HVS characteris-
tics, more specifically, the contrast sensitivity function (CSP).
The images are decomposed by contourlet transform in [136],
and grouplet transform in [137]. The quality criterion C4 in
[138] first models the HVS characteristics in respect of color
perception, CSF, psychophysical subband decomposition and
masking effect modeling; then extracts the structural similarity
between the original image and distorted image to get the final
RR metric.

C. No Reference Model

No reference model can meet the demand of real-time QoE
monitor. However, it is hard to develop since there is no
access to the original video. Therefore, much effort has been
put on mapping the network statistics (e.g., packet loss rate,
bandwidth), which can be obtained from simple measurement,
and application-specific factors (e.g., encoding bitrate, packe-
tization scheme), to the quality estimation. In this section, we
introduce NR models according to Fig. 12. Note that the classi-
fication mostly depends on the major techniques or theory basis
of the model, and may not be exclusive. In particular, the PLV
based and NSS based NR models are the extensions of their RR
counterparts; and the bitstream-layer, packet-layer, and hybrid
models are based on the access of information of streamed
videos. In this section, we will focus on the bitstream-layer,
packet-layer, and hybrid models for streamed videos, since the
PLV and NSS based models have already been explained in the
previous session. Table X gives a summary of the NR models.

1) Bitstream-Layer Models: A survey of bitstream-based
models is given in [139]. Now we introduce several typical
bitstream-layer models.

• QANV-PA
Apart from coding factors and video motion information,
QANV-PA further consider the temporal information and
the influence of packet loss.

– Frame quality.
QP parameter and spatial and temporal complexity of
the nth frame are included in the frame quality:

Qn = f(qn) + (b3 − f(qn))

((
δS,n
a1

)b1

+

(
δT,n

a2

)b2
)
(61)

in which f(qn) is a linear function of the QP parameter
qn, δS,n, and δT,n are the spatial and temporal com-
plexity, respectively, and a1, a2, b1, b2, b3 are constant
parameters.

– Packet loss influence
The degradation due to the packet loss is characterized
by parameter pn, which depends on the number of
frames that are affected by the packet loss, and the
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TABLE X
NO REFERENCE MODELS

temporal complexity δT,n. Then, the quality metric
becomes:

Q′
n = Qn − pn (62)

– Temporal pooling
The quality factors of the frames are integrated by
temporal pooling.

QANV − PA =

∑
n∈D

(
QF ′′

n Tn

)∑
n∈D Tn

(63)

in which D is the set of successfully decoded frames,
Tn is the duration of the nth frame, and Q′′

n is the
contribution of the quality of the nth frame to the entire
video.

Q′′
n = Q′

n

(
a4 + b4δ

′
T,n + c4δ

′
T,nlog(Tn)

)
(64)

in which δ′T,n = δT,n/max(δT ) is the normalized
temporal complexity.

• C-VQA
Three factors: quantization parameter factor, motion factor
and bit allocation factor, are calculated and then combined
to form C-VQA.

– Quantization parameter (QP) factor.
The quantization process causes loss of temporal and
spatial information. The higher the QP is, the more

severe the quality degradation will be. The QP factor
is computed as:

FQ = (aCn + b)cq (65)

in which a, b, c are constants, q is the average QP over
n consecutive frames, and Cn is the feature parameter
of the n frames, including width, height and so on.

– Motion factor.
The motion factor accounts for the global motion con-
sistency and local motion consistency. Global motion
consistency Mg is calculated based on the variance
of horizontal and vertical motion vector of moving
objects (as opposed to stationary background). Local
motion consistency Ml is calculated based on the ab-
solute difference of motion factors between successive
macro blocks. The motion factor is the combination of
the above two motion factors.

Fm = Mg +Ml (66)

– Bit allocation factor
Bitrate control is applied to streamed video because
bitstream is restricted by limited bandwidth. The effec-
tiveness of the bitrate control scheme is characterized
by factor Cr, and the bit allocation factor is calculated
as follows

FB = VB × Cr (67)

in which VB is the variance of bit consumption of the
macro blocks.
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Finally, the C-VQA is a weighted sum of the QP factor,
motion factor, and bit allocation factor:

C − V QA = θ(αFQ + βFM + γFB + η) (68)

in which FQ, FM , FB are the average values over N
frames.

2) Packet-Layer Models: The packet-layer models use only
the information of the packet header for quality estimation, not
depending on the information from the payload. For packets
where the payload is encrypted, packet-layer models are more
applicable.

• Vq

Vq is a simple packet-layer model, which estimates the
quality affected by the packet loss rate. Firstly, the video
quality, when there is no packet loss, is estimated.

Vq|PL=0 = 1 + Ic (69)

in which Ic is a function of the bitrate BR.

Ic = a1 −
a1

1 + (Br/a2)
a3

(70)

in which a1, a2, a3 are constant parameters.
When the packet loss rate PL is non-zero, the video

quality is fitted by an exponential function

Vq = 1 + Ic exp

(
−PL

a4

)
(71)

in which PL is the packet loss rate, a4 is a constant.
• CARL

CARL is developed based on the bitstream-layer model
QANV-PA. However, due to a lack of payload information,
the frame quality Qn and temporal complexity δT,n are
computed differently.

Qn = 1 + a1

(
1−

(
Rn

a2δT,n + b2

)−b1
)

(72)

in which a1, a2, b1, b2 are constant parameters, Rn is the
average number of bit allocation for a frame in a Group of
Pictures (GoP).

For packet-layer model, the motion vector, used to
compute temporal complexity, is not available. Therefore,
the temporal complexity is estimated as follows.

δT,n = |RP,n/RI,n − a3| (73)

in which RP,n and RI,n are the average bit allocation for
the P frame and I frame in a GoP respectively, a3 is a
constant. After calculating Qn, the packet loss influence
and temporal pooling process are similar to those of
QANV-PA.

3) Hybrid Models:

• rPSNR
rPSNR is a light-weight no reference model, focusing
on the relationship between packet loss and QoE, while
also considering video codec, loss recovery technique,

encoding bitrate, packetization, and content characteris-
tics. Video distortion (denoted by D) is measured through
Mean Square Error (MSE), which is derived as a function
of packet loss as follows:

D =Pef(n)LD1

PSNR =10log10
2552

D
(74)

in which Pe is the probability of packet loss event in the
video streaming; f(n) is the average number of slices
affected by a loss event; L is the number of packets used
for transmitting one frame; D1 is total average distortion
caused by losing a single slices. f(n) is different for dif-
ferent codec. For example, in MPEG-2, once a packet loss
is detected in a frame, the entire frame will be discarded,
and replaced by the previously-decoded frame. However,
in H.264, more sophisticated error-concealment is used.
All slices will be decoded, and the slices affected by packet
loss will be recovered using the corresponding slices in
the previous slice and the motion information from other
slices in the same frame. The estimation of D1 depends
on the error propagation resulting from loss of one slice
due to coding dependencies between frames. Pe and f(n)
is network-dependent, and can be easily obtained from
network statistics. L can be easily determined based on
application configuration. However, D1 is dependent on
individual video characteristics and may not be efficiently
estimated when considering real-time quality monitoring
of a large number of video streams. To tackle this prob-
lem, we can compare the quality of the video transmitted
over a path with that transmitted over a reference path.
A reference path is a transmission path whose QoE is
known beforehand. Usually, we can select the path which
generates targeted QoE as the reference path, so that we
know how much better or worse the actual path performs.
Relative PSNR (rPSNR) is the difference between the
monitored network path and the reference path.

rPSNR = PSNR− PSNR0 (75)

The resulting rPSNR is independent of D1, and therefore,
easy to compute.

• Application Performance Metrics (APM)
APM characterizes the impact of rebuffering events on the
QoE for HTTP video streaming service. Unlike traditional
UDP-based video streaming, the HTTP over TCP video
streaming does not suffer from frame loss. First, network
QoS metrics, such as the round-trip time (RTT), packet
loss rate, and bitrate(determined by bandwidth), are used
to estimate the three APM metrics: startup delay, rebuffer-
ing time and rebuffering frequency. Then, the APM met-
rics are fed into the prediction model to get the estimated
MOS value. Linear regression is performed for the APM
values and MOS values obtained from subjective tests to
get the QoE prediction model. The regression results show
that the rebuffering frequency has the most significant
influence on the QoE.
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TABLE XI
USER-VIEWING ACTIVITIES

In [26], the above APM model is refined by incorporat-
ing the influence of user-viewing activities and resort to lo-
gistic regression. It is observed that video impairment can
trigger viewer interactive activities as listed in Table XI.
Two major user-activity metrics, number of pause event
and number of screen size reducing event, are put into
the logistic regression model, along with the three APM
metrics. The results show an improved explanatory power
of the regression model.

• UMTS Quality Metric
Video transmission over wireless network, more specif-
ically the Universal Mobile Telecommunication System
(UMTS) is considered in [27], taking into account the
distortions caused by the transmission network. Subjective
tests are first conducted for different combinations of
sender bitrate (SBR), block error rate (BLER), mean burst
length (MBL) and content type (CT). SBR reflects the
distortion from the encoder; both BLER and MBL reflect
the distortions from the transmission network; CT is the
content type in terms of temporal and spatial features,
identified by cluster analysis tool in [51]. Nonlinear re-
gression on the subjective test results yields the following
function:

MOS =
α+ β × ln(SBR) + CT × (γ + δ ∗ ln(SBR))

1 + (η × (BLER) + σ(BLER)2)×MBL
(76)

in which α, β, γ, δ, η, and σ are regression parameters.

In Fig. 22, we show the timeline of all the major objective
quality models introduced in this section. We can see several
trends of the evolution of objective quality models.

• From FR models to NR models. As the need for real-
time QoE monitoring and prediction becomes increasingly
urgent, more and more NR models are being proposed. At
the meantime, the FR models are further developed due to
better understanding of HVS and other related areas.

• From image to streamed video. Previously, many models
are first designed for image quality assessment, then ex-
tended to video quality assessment. The development of

video streaming services motivates research on streamed
video quality assessment depending on the information
extracted from packet header or payload.

D. Performance Validation

The output of the objective quality model should be well
correlated with the subjective results, which are regarded as
the ground truth for user QoE. The Video Quality Expert
Group (VQEG) gives a test plan [13] for validating objective
quality models. The relationship between the output from the
objective quality model and the results from the subjective
test is usually estimated by a nonlinear regression function.
It does not matter what form of nonlinear function is used as
long as it is monotonic, applicable to a wide range of video
content, and has minimum free parameters. Multiple forms of
nonlinear functions will be tried to find the best-fitting one. Let
V QR denote the output of the objective quality model; MOSp

denote the predicted MOS value by the regression function;
MOSnorm denote the normalized output of the subjective test.

MOSnorm =
MOS −MOSmin

MOSmax −MOSmin
(77)

Following are some of the most common-used nonlinear
regression functions, fitted to data [V QR,MOSnorm].

• Simplistic logistic function.

MOSp =
1

1 + expC0(V QR− C1)
(78)

For ease of analysis, the above function can be
transformed as the linear form loge(1/MOSp − 1) =
C0(V QR− C1).

• Four-parameter cubic polynomial function

MOSp = C0 + C1 × V QR+ C2 × V QR2 + C3× V QR3

(79)

• “Inverse” four-parameter cubic polynomial function

V QR = C0 + C1 ×MOSp + C2 ×MOS2
p + C3×MOS3

p

(80)

• The 5-parameter logistic curve

DMOSp(V QR) = A0 +
A1 −A0

1 +A4 × (V QR+A5)/A3
(81)

Apart from MOS, similar analysis can be performed on
individual opinion scores (OS), and difference opinion scores
(DOS). The performance of the objective quality model is
evaluated from three aspects: prediction accuracy, monotonicity
and consistency.

• Prediction Accuracy is represented by the Pearson linear
correlation coefficient and root mean-square-error (MSE).
The Pearson linear correlation coefficient between two
variables X and Y is:

ρX,Y =
E [(X − E(X)) (Y − E(Y ))]√[

E(X2)− (E(X))2
] [

E(Y 2)− (E(Y ))2
] (82)
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Fig. 22. Timeline of the objective quality models.

The Pearson linear correlation coefficient quantifies the
correlation between two variables. It has the value
in [−1,1], where −1 means total negative correlation,
0 means no correlation, and 1 means total positive
correlation.

Root mean-square-error (MSE) is:

MSE =
1

N

∑
i

(MOSp −MOS)2 (83)

• Prediction Monotonicity is represented by the Spearman
rank order correlation coefficient.

The Spearman rank order correlation coefficient char-
acterizes how well one variable can be represented as a
monotonic function of the other variable. One merit of
the Spearman rank order correlation coefficient is that
no knowledge of the relationship (e.g., linear, logistic)
between the two variables is required (referred to as non-
parametric). Assume that we have N raw samples (X,Y ).
The calculation of the Spearman rank order correlation
coefficient is as follows:

– Sort X and give rank number xi to the ith sample, e.g.,
if in the 1st sample, the value of variable X is the 4th
largest, then x1 = 4;

– Sort Y and give rank number yi to the ith sample, e.g.,
if in the 1st sample, the value of variable Y is the 5th
largest, then y1 = 5;

– The Spearman rank order correlation coefficient ρ is

ρ = 1− 6
∑

i(xi − yi)
2

N(N2 − 1)
(84)

The Spearman rank order correlation coefficient has the
value in [−1,1], where −1 means X can be represented
as a monotonically decreasing function of Y , 1 means X
can be represented as a monotonically increasing function
of Y .

• Prediction Consistency is represented by the outlier ratio.

Outlier ratio =
number of outliers

N
(85)

in which N is the total number of samples, and an
outlier is a point for which |MOS −MOSp| > 2 ∗
(Standard Error of MOS).

Furthermore, wide application and computational complexity
are two other aspects to evaluate the objective quality model.
It is ideal for the objective quality model to give relatively
good prediction for a wide range of video content. However,
there is no metric to evaluate the wide applicability of the
model. Therefore, it is desirable to cover as many types of video
content and test conditions as possible in the subjective test. It is
recommended that at least 20 different video sequences should
be included.

E. Objective Quality Model Projects and Standards

1) VQEG Projects: The Video Quality Experts Group
(VQEG), established in 1997, with experts from ITU-T and
ITU-R study groups, carried out a series of projects to validate
objective quality models. Their work leads to inclusion of
recommended objective quality models in International
Telecommunication Union (ITU) standards for standard defi-
nition television and for multimedia applications [140]. Subjec-
tive test plan is given for laboratories to carry out subjective test.
The resulting database is used for validating objective quality
models’ prediction power. Objective test plan is given to evalu-
ate the submitted objective quality models with specified statis-
tical techniques and evaluation metrics. The final report of each
test summarizes the testing results as well as providing detailed
description of the subjective evaluation procedure, the proposed
objective quality models, the evaluation criteria and some dis-
cussion and comments. The subjective test sequences and corre-
sponding scores are made accessible for researchers to validate
their objective models. The validation test projects that have
been accomplished by the VQEG is summarized in Table XII.

2) LIVE Project: The Laboratory for Image and Video En-
gineering (LIVE) at the University of Texas at Austin, led
by Prof. Alan C. Bovik, establishes the LIVE Video Quality
Database, due to two deficits of the existing VQEG Phase I
FR-TV database [29]:

• VQEG database uses old-generation codec such as H.263
and MPEG-2, while the more advanced H.264/MPEG-4
Part 10 codec may exhibit different distortion patterns.
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TABLE XII
VQEG COMPLETED VALIDATION TESTS

• VQEG database subjective test results are skewed towards
high user scores (it is ideal that user scores are uniformly
distributed), suggesting that the processed video sequences
have poor perceptual separation.

The LIVE database is publicly accessible with the aim to
“enable researchers to evaluate the performance of quality
assessment algorithms and contribute towards attaining the ulti-
mate goal of objective quality assessment research—matching
human perception” [141]. Table XIII summarizes the differ-
ences between the VQEG Phase I FR-TV database and the
LIVE database. In the LIVE database, H.264 advanced video
coding is used, and the wireless network distortion is simulated.
There are ten source sequences provided by Boeing, with a
diversity of motions, objects and people. The encoded source
sequences are regarded as the original version as it is claimed
that H.264 compression is visually lossless (with average PSNR
greater than 45 dB). Each sequence is processed with a com-
bination of 4 bitrates (500 kb/s, 1 Mb/s, 1.5 Mb/s, 2 Mb/s)
and 4 packet loss rates (0.5%, 2%, 5%, 17%), resulting in
160 processed sequences. The subjective test results show that
the DMOS value has good perceptual separation (i.e., the values
are nearly uniformly distributed). Single stimulus continuous
quality-scale (SSCQS) based on [57] is used as the subjective
test method. To counteract the individual bias, the original
video sequences are inserted in the testing sequence. Therefore,
(score for the processed video)—(score for the original video)
is regarded as an unbiased score. The use of continuous quality-
scale also breaks the limitation of categorical quality-scale
used in VQEG database. However, only 60 Hz refresh rate is
considered (the VQEG Phase I FR-TV test includes both 50 Hz
and 60 Hz).

F. Discussion

Objective quality model has a wide range of applications,
including equipment testing (e.g., codec evaluation), in-service
network monitoring, and client-based quality measurement.
However, in [142], the author points out seven challenges facing
the current objective quality models. Interested readers can
refer to the original paper for more details.2

• Insufficient knowledge of HVS and natural image. Most
of the objective quality models only employ low-level

2Though [142] limits the discussion to image quality assessment, the main
points are still applicable to video quality assessment.

TABLE XIII
DIFFERENCES BETWEEN LIVE DATABASE AND VQEG PHASE I

FR-TV DATABASE

HVS properties. Though VSNR leverages mid-level HVS
property (global precedence), the modeling of higher level
HVS property is far from complete. Another problem is
that visual neurons have different responses to simple,
controlled stimuli and to natural image. This may affect
masking results, in particular, the contrast threshold. How-
ever, there is a lack of ground truth data of local contrast
detection thresholds for natural images.

• Compound and suprathreshold distortions. Compound dis-
tortions refer to distortions that stimulate more than one
channel of the HVS multichannel system; suprathreshold
distortions refer to distortions that are obviously visible.
Existing near-threshold distortion analysis focuses on the
visual detectability of the distortion. However, it is found
that visual detectability of the distortions may not accord
with viewers’ perception towards suprathreshold distor-
tions [143], [144]. Therefore, models suitable for near-
threshold distortions may not be able to be extended to
account for suprathreshold distortions.

• Interaction of the distortion and the image. There are two
different assumptions about the relationship between the
distortion and the image. One is that the distorted image
is a single stimulus (“overlay distortion”); the other is that
the distorted image is a combination of two separate stim-
uli: the distortion added to the image (additive distortion).
It is important to distinguish these two types of distortions.

• Interaction between distortions. One type of distortion
may mask another type of distortion, known as cross-
masking. To quantify the interaction between distortions
and their effect on the image quality is needed.
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• Geometric changes. It is argued that current objective
quality models are bad at dealing with geometric changes.
For example, slight rotation of the objects has little impact
on perceptual quality but will result in lower quality esti-
mation by the objective quality models.

• Evaluation of enhanced image. Image enhancement such
as noise reduction, color correction and white-balancing,
may in turn make the original image seem like inferior.
One way to evaluate enhanced image is to treat the original
image as “distorted”, and the enhanced image as “orig-
inal”; then apply existing objective quality models. The
feasibility of such method still needs to be verified.

• Efficiency. Efficiency concern includes running time and
memory requirement.

Apart from the above challenges, we also have the following
comments for the objective quality models.

• Full reference model is impossible to implement for real-
time QoE prediction and monitoring, because of its com-
plexity and the need to access the original video. Reduced
reference model, though does not need the access to the
original video, requires extra resources (e.g., a side chan-
nel) to transmit the extracted information of the original
video. Psychophysical approach models that are based on
the mechanisms of the HVS, though perform well with the
subjective MOS scores, often have high complexity. Engi-
neering approach models usually have lower complexity,
and can be calibrated using the subjective test results.

• All of the existing objective quality models compared
their predicted QoE with the MOS scores to evaluate their
performance. The MOS scores are obtained from the sub-
jective test, which is limited in test video types, number of
human assessors, and test conditions. Therefore, objective
quality models with predicted QoE close to one set of
MOS scores of a particular subjective test, may not have
the same good performance compared with another set of
MOS scores obtained from a different subjective test.

V. DATA-DRIVEN QoE ANALYSIS

The dramatic development of video distribution over the
Internet makes massive data available for analysis, and triggers
a new research interest of data-driven QoE assessment. Com-
mercial broadcast television corporations (e.g., FOX, NBC)
and on-demand streaming video service providers (e.g., Netflix,
Hulu) now provide millions of videos online. Improving user
QoE is crucial to the service providers and network operators,
since small changes in viewer behavior will lead to whopping
changes in monetization opportunities due to huge viewer base
over the Internet.

To begin with, we give a detailed description of a typical
video viewing session, based on which we introduce the QoE
and QoS metrics that are concerned by the current data-driven
QoE-related works. Define a viewer as a specific identifiable
user who watches video through the service of a provider;
define a view as the event that a viewer watches a specific video;
define a visit as the event that a viewer continually watches
a series of videos from a specific website. Two visits are
separated by a duration of inactivity for a time threshold. Fig. 23

Fig. 23. A typical video watching session.

shows a typical video watching session. A viewer initiates a
video request, and the video player establishes the connection
to the server. A certain amount of data has to be downloaded
in the buffer before the video starts playing (startup state).
During playing, the video player fetches the data in the buffer;
and meanwhile, downloads more data from the server (playing
state). If the rate of using the data exceeds the rate of download-
ing (e.g., due to poor connection), the buffer will be exhausted.
In this case, the video player has to pause to fill its buffer to
a certain level before start playing again (rebuffer state). The
viewer therefore experiences interruptions during this period.
During the video session, viewers may also have interactive
actions such as pausing, fast-forwarding, rewinding, changing
the resolution or changing the screen size. A view may end in
four manners.

• Abandoned view. The viewer voluntarily quits during the
startup state, and does not watch any of the video.

• Aborted view. The viewer watches a certain part of the
video, but voluntarily quits during the playing state or
rebuffer state before the video completes.

• Failed view. The requested video involuntarily ends due to
failure of the server, the connection or the video content.

• Complete view. The view ends when the video is com-
pletely watched.

Except for the case of complete view, all other three cases
may be a result of user dissatisfaction, which may be caused by
poor video quality, user’s lack of interest in the video content,
or external interruption (e.g., mobile users on the train reaches
destination). The following metrics are often used to represent
user QoE by quantifying the user engagement for the video
service:

• View-level metrics, which regard the engagement of each
video viewing session.

– Viewing time per view: the actual time that a user
watches a video. Usually, the ratio of the viewing time
to the total duration of the video is used as an indicator
for user engagement.

– Abandoned view ratio, the percentage of views that are
voluntarily abandoned by the viewers during startup
state.

• Viewer-level metrics, which regard the engagement of
each viewer.

– Number of view, the number of video clips a user
watches within a certain time period on a certain
website.

– Viewing time per visit, the total length a user watches
the video during a visit to a certain website.
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TABLE XIV
MEASUREMENT STUDY ON USER BEHAVIOR RESEARCH

TABLE XV
DATA-DRIVEN VIDEO QOE RESEARCH

– Return rate, the percentage of viewers who visit the
same website again within a specified time period. The
return rate indicates the possibility that a user will visit
the video website in the future.

– Video rating. Many video websites enable users to
rate the video. For example, YouTube uses a scale of
0–5 “stars”; Youku and Tudou have a “Thumb-up” or
“Thumb-down” choice.

These measurable QoE metrics are also directly related to
the service providers’ business objectives. For example, for
advertisement-supported video service, if the viewing time is
longer, more ads can be played to the viewers; for subscription-
supported video service, better QoE can reduce the viewer
churn rate.

While still considering the influential factors described in
Section II, current data-driven QoE research is more focused
on the following QoS metrics.

• Startup delay, also called join time. As shown in Fig. 23,
join time is the time between the user requests the video
and the video actually begins playing, during which the
buffer is being loaded.

• Rebuffering. The encoded video stream is temporarily put
in a buffer to be played back later. As shown in Fig. 23,
when the buffer is depleted, the player pauses to rebuffer.
There are two ways to quantify the rebuffering event.

– Rebuffering time ratio, the ratio of the total time for
rebuffering to the total viewing time.

– Number of rebuffering. If the rebuffering happens quite
frequently, but the time for each rebuffering is very
short, the ratio of rebuffering is low, yet such inter-
mittent playing may annoy the viewer. The number
of rebuffering can characterize the frequency of the
rebuffering event.

• Average Bitrate at which the video is rendered on the
screen to the viewer. This rendered bitrate depends on
the video encoding bitrate, network connectivity and the
bitrate-switch heuristics employed by the media player.

In the rest of this section, we first introduce the earlier work
of video measurement study on user behavior, as summarized
in Table XIV, then we introduce three recent directions of data-
driven QoE analysis, as summarized in Table XV.

A. Measurement Study on User Behavior in Video Service

Large-scale measurement studies have long been carried
out to study general user behavior in various video services,
including online VoD service [145], [150], Live VoD [148],
P2P IPTV system [147], the YouTube traffic [146], [149], [153]
and mobile video service [151]. A survey of user behavior in
P2P video system is recently given by [154]. In this section, we
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first identify the general user behavior revealed by these mea-
surement study, then introduce a decision theoretic approach to
model user behavior.

1) General User Behavior: We discuss the following user
behaviors that have been studied by many measurement studies.

• Early quitter phenomenon/video browsing. It is found that
the most video sessions are terminated before completion
[55], [148], [150]. More specifically, many viewers quit
the video session within the first short period of time. One
of the explanations for this early quitter phenomenon is
that a viewer browses several videos before dedicating to
a specific one which interests him. The video browsing
behavior is intensively studied by [150]. It is found that
viewers often use seeks (jump to a new part) to browse a
video, and that the viewers are more likely to browse pop-
ular videos first due to recommendation. Another problem
caused by the early quitter problem is that the downloaded
video files will exceed the watched video files, resulting in
data waste, which is found to be more severe for the player
on the mobile device than the computer [149].

• Temporal user access pattern. It has been confirmed in
many papers that user access has a clear and consistent
daily or weekly pattern [55], [145], [146], [148]. The
diurnal viewing pattern is also found in the P2P video
system [147].

• Video quality metrics. Three video quality metrics, i.e.,
startup delay, rebuffer events, and encoding bitrate, are
most-commonly characterized by their cumulative distri-
bution function [145], [147], [149]. In particular, the im-
pact of rebuffering time is studied in [151] by a subjective
test like experiment. Each assessor watches preassigned
videos with different bandwidth, quality and rebuffering
time combinations, in a mobile context. Then, they are
asked to answer questionnaires to express their experience.
Finally, the relationship between the rebuffering time and
viewers’ acceptance of the video quality is fitted by a
logistic regression model.

• Video popularity. It is found that the video popularity
can be approximated by the Parento Principle, or 80–20
rule. That is to say, a few top videos account for most of
the viewer accesses [55], [145], [148], which is usually
compared with a Zipf-like distribution. It is found that the
popular video list changes quite frequently [148]. As the
video release time increases, the video popularity often
drops. However, if later, a remake version appears or a
certain event happens, the related video may have a surge
in popularity [148].

• Flash crowd phenomenon. Normally, user arrival distribu-
tion is found to follow the Poisson distribution in [55].
Flash crowd refers to a burst of video access or request
within a short period of time. It is usually triggered by
special national or international events, for example, pop-
ular events in the Olympic Games [148], or Chinese spring
festival gala show [147]. The flash crowd phenomenon
will impose great pressure on the network due to huge
amount of video traffic. One solution is to push related
videos to multiple edge servers during such event.

2) Decision Theoretic User Behavior Model: In [155], a
theoretic model based on decision network, an extension
to the Bayesian network [156], is proposed to characterize
user behavior. There are four types of nodes in the decision
network.

• Chance nodes, also the bottom nodes. Chance nodes rep-
resent all random variables in the system, including all
possible QoS parameters and external factors we introduce
in Section II.

• Query nodes, the parents of chance nodes. Query nodes
determine the current state, including four contexts: net-
work context, service context, environment context and
user behavior.

• Utility nodes, associated with each of the four types of
query nodes, including network utility, service utility, en-
vironment utility and user behavior utility. Utility nodes
specify the utility function in each context.

• Decision nodes, the top nodes. Decision nodes choose
the optimal option according to predefined target, e.g.,
maximum QoE.

Firstly, the chance nodes are fed with evidence variables.
After the values of the evidence variables are determined, the
posterior probability distribution of the query nodes can be
calculated. Then, the utility nodes figure out the utility for
different options. Finally, the decision nodes choose the option
which maximizes the QoE. The Bayesian network or decision
network can be applied to estimate user departure time [156] or
perceptual quality [155]. Further development and verification
of such models are expected.

Measurement study can only give a general understanding of
the user behavior in video service under different conditions. In
order to monitor, predict and even control user QoE, we need
more in-depth analysis.

B. Data-Driven QoE Analysis

1) Correlation and Linear Regression Based Analysis: In
[48], a framework is built for identifying QoS metrics that have
significant impact on user QoE for different video types; and
quantifying such influence by linear regression. QoS metrics
include startup delay, rebuffering and bitrate; QoE metrics
include the viewing time ratio, number of views and total time
of viewing. The data is collected at the client side via affili-
ated video websites, covering five influential content providers.
Videos are classified as Long VoD, Short VoD and Live videos.
The flow of the analysis is shown in Fig. 24.

• QoE-QoS Kendall Correlation
The correlations between each QoS and QoE metrics
are calculated to determine the magnitude and the di-
rection of the influence of each QoS metric. The paper
chooses Kendall correlation coefficient, a non-parametric
rank correlation measurement to quantify the similarity
between two random variables. Unlike Pearson correlation
coefficient, which measures the linear dependence of two
random variables, the Kendall correlation coefficient does
not assume the relationship between the two variables.
High absolute correlation value is regarded as an indicator
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Fig. 24. Linear regression based QoS-QoE model.

for significant impact of the QoS metric on the QoE
metric. Kendall correlation coefficient can be calculated
as follows. Let (x1, y1), (x2, y2), . . . , (xn, yn) denote the
joint observation of two random variables X and Y .
Pair (xi, yi), (xj , yj) is concordant if xi > xj , yi > yj or
xi < xj , yi < yj , otherwise, the pair is discordant. The
case xi = xj , yi = yj can be treated as concordant or
discordant. The Kendall correlation can be calculated as:

τ =
Nconcordant −Ndiscordant

1
2n(n− 1)

(86)

The number of possible pairs of observation is 1
2n(n− 1),

so τ ∈ [−1, 1]. If the ordering of X and Y is perfectly
agreed, τ = 1; If the ordering of X and Y is perfectly
disagreed, τ = −1; If X and Y are independent, |τ | ≈ 0.

• Information Gain Analysis
The Kendall correlation coefficient cannot reveal the non-
monotonic relationship between the QoS and QoE metrics.
Information gain helps to get a more in-depth understand-
ing of the QoS-QoE relationship by quantifying how the
knowledge of a certain QoS metric decreases the uncer-
tainty of the QoE metrics. Let X denote the QoE metric,
and Y denote the QoS metric. The information gain for
X , given Y is [I(X)− I(X|Y )]/I(Y ), in which I(·) is
the entropy, a characterization of how much information
is known of the random variable. Information gain can be
calculated for not only an isolated QoS metric, but also
the QoS metric combinations. High information gain is
regarded as an indicator for significant impact of the QoS
metric on the QoE metric.

• Linear Regression
Linear regression based curve fitting is applied to the QoS-
QoE pairs which are visually confirmed to have quasi-
linear relationship. By observing the QoS-QoE curves, it
is obvious that the relationship is not linear in the entire
range. Therefore, linear regression is only applicable to a
certain range of data.

The above analysis framework is applied for Long VoD,
Short VoD and Live videos. There are two key findings.
First, certain QoS metrics have high influence on one
type of video, but low influence on other types of video.
In other words, the influence of QoS metrics is content-
dependent. Second, certain QoS metrics have low absolute
correlation coefficient values, but high information gain.
The possible reason is that the QoS-QoE relationship may
be non-monotonic. Therefore, correlation analysis alone is
not enough to decide the importance of QoS metrics.

Fig. 25. Decision-tree based QoE prediction model.

Though being a simple way to characterize the QoS-QoE
relationship, the correlation and linear regression based analysis
fail to deal with the following problems.

• Non-monotonic relationship between the QoS and QoE.
• Interdependence between QoS parameters. The linear re-

gression requires that the QoS parameters are independent,
which may not be true, e.g., it is shown that bitrate and
startup delay are correlated [30], [53].

• External factors handling. There is a lack of analysis on
external factors and their influence on user QoE.

2) Decision Tree Based QoE Prediction Model: To over-
come the drawbacks of the linear regression and correlational
analysis, in [30], [53], a decision-tree based QoE prediction
model is developed based on 40 million video views collected
on the video website conviva.com. Viewing time ratio is chosen
as the QoE metric; startup delay, buffer events and average
bitrate are chosen as the QoS metrics; external factors consid-
ered are video type (live or VoD), connectivity and so on. The
analysis framework is shown in Fig. 25.

• Data Collection and Pruning
Not only the QoE and QoS metrics are recorded, the
viewer-specific parameters (e.g., video type, device type
and time stamp) are also collected for external factors.
The early-quitters who watch the video for a very brief
time are eliminated from the data set to improve prediction
accuracy.

• QoS-only Decision Tree Building
Decision Tree model is a non-parametric model, which
does not presume the QoS-QoE relationship (therefore
can deal with non-monotonicity), and does not require the
QoS metrics to be independent. In addition, it is simple
but expressive enough to characterize QoS-QoE relation-
ship and give relatively accurate predictions. First, each
parameter is discretized because decision tree can only
deal with discrete values. Then, the data set is separated
into 10 groups. The model is trained 10 times. Each time,
9 groups are used for training and the remaining group for
validation.

• External Factors Identification
The impact of external factors is on three aspects: the QoE
metrics, the QoS metrics and the QoS-QoE relationship.
The impact on QoS and QoE metrics is identified by the
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information gain; and the impact on QoS-QoE relationship
is identified by the difference in decision tree structure and
QoE-QoS curve. If an external factor has high information
gain for a certain QoS metric or QoE metric, or makes
the tree structure and/or QoE-QoS curve different, it is
identified as an important external factor.

• Decision Tree Refinement
After figuring out the important external factors, there are
two ways to refine the QoS-only decision tree

– Add as an input to build the decision tree. It is simple,
but mixing the QoS metrics with external factors gives
confusing guidance.

– Split the data according to different external factors
(or combinations, like VoD-TV). It will lead to a forest
of decision trees. The curse of dimensionality may
happen when the data is sparse.

It is shown that splitting the data often gives better
results than adding the external factor as an input.

• QoE-aware CDN & Bitrate Selection
Brute force method is used to find the optimal Content
Delivery Networks (CDN) and bitrate combination by
feeding the (CDN, bitrate) pair and other QoS metrics
and external factors into the QoE prediction model. The
(CDN, bitrate) pair that yields the highest predicted QoE
is optimal.

Though overcoming the drawbacks of the linear regression,
the above decision tree based analysis framework still suffers
from the following major problems:

• The final QoE prediction is a range rather than a value.
Therefore, it cannot meet the need for fine-grained QoE
prediction.

• The decision tree can only deal with discrete values. The
way how the parameters are discretized may influence the
performance of the model.

3) QED Based QoS-QoE Causality Analysis: To verify the
existence of causal relationship between QoS and QoE, a QED-
based model is built to identify the QoS metrics that have a
significant causal effect on the QoE metrics, thus providing
a guidance to service providers of which QoS metrics should
be optimized [152]. Correlational relationship does not infer
causal relationship, thus may lead to incorrect conclusions.
For example, one can not conclude that high bitrate alone will
result in longer viewing time, unless all the other factors (e.g.,
video popularity, buffering time) are accounted for. The authors
only consider VoD videos, with a dataset of 23 million views
from 6.7 million unique viewers, using cable, fiber, mobile and
DSL as major connections. The QoE metrics under analysis
are the abandonment rate, viewing time and return rate; and
the QoS metrics are failures, startup delay, average bitrate and
rebuffer delay.

To verify that a QoS metric X has a causal influence on the
QoE metric Y , the most ideal method is through controlled test.
In the test, two viewers with perfectly the same attributes but
only differ in X are compared in terms of their resulting Y .
Such controlled test is infeasible to implement for the video
distribution service. But Quasi-Experimental Designs (QED)

Fig. 26. QED-based QoS-QoE causal relationship analytical framework.

[157], can be leveraged to reveal the causal relationship from
the observational data. The flow of the QED-based QoS-QoE
causal relationship analytical framework is shown in Fig. 26.

• Establish Null Hypothesis
A null hypothesis usually takes the form “The QoS metric
X has no impact on the QoE metric Y ”. The null hypoth-
esis will be rejected if there is causal relationship between
the QoS metric and the QoE metric.

• Match Treated and Untreated View/Viewer
A view/viewer is treated if the view/viewer undergoes
a certain “bad” QoS condition, e.g., a rebuffering time
ratio more than α%. A view/viewer is untreated if the
view/viewer undergoes a corresponding normal QoS con-
dition, e.g., a rebuffering time ratio less than α%. Re-
garding a certain QoS metric, all the treated view/viewer
form the treated set T , all the untreated view/viewer form
the untreated set U . Then, for each t ∈ T , uniformly and
randomly pick a u ∈ U , that is “identical” to t in every
other aspects. (t, u) is a matched pair, and all matched
pairs form the match set M .

• Calculate Scores for Matched Pairs
For a matched pair (t, u) in M , if the QoE values conform
to the hypothesis, (e.g., t has lower QoE value than u), the
score of pair (t, u) is assigned 1; otherwise, the score of
pair (t, u) is assigned −1. Other ways of assigning score
value are also possible [152].

• Sum Up Scores
The sum of the scores for all matched pairs is

Sum of score =

∑
(u,t)∈M Score(u, t)

|M | (87)

• Significant Test
A “p-value” based on sign test is calculated, which indi-
cates the probability that the data conforms with the null
hypothesis. If the “p-value” is small, the null hypothesis
can be rejected with high confidence, corroborating the
assumption that the QoS metric has a causal influence on
the QoE metric.

Though verifying the causal relationship between QoS and
QoE, the above framework does not quantify the QoS-QoE
relationship. Hence, it cannot be used for QoE prediction, or
providing instrumental guidance on how to achieve QoE-based
video service optimization.
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C. Discussion

After discussing the advantages and disadvantages of the
existing models, we now identify the requirements of an ideal
data-driven QoE analysis model:

• Requirement for QoE Metrics.

– Measurable. Since the raw data is collected in the wild
rather than in a controlled laboratory environment,
the QoE metrics for large-scale data-driven analysis
should be easy to measure and monitor in real-time.
This is also true for the QoS metrics and the external
factors.

– Informative. The selected QoE metrics should be a
good indication of user experience or engagement. It
may be needed to verify the correlation between the
measurable QoE metrics (such as viewing time ratio)
and real subjective user QoE.

– Business fitting. Ideally, the QoE metrics should be
closely linked to the service providers’ business ob-
jectives, e.g., contributing to the monetization of
the advertisement-supported or subscription-supported
video service.

• Requirement for QoS-QoE Model

– Reliable. The model should give reliable QoE predic-
tion, given the QoS parameters and external factors.
Models that assume independency among QoS vari-
ables may be not be accurate, e.g., it is found that the
bitrate and buffering are correlated [30].

– Expressive. The model should be expressive enough to
capture the complex and non-monotonic relationship
between QoS and QoE. Regression models that preas-
sign a certain relationship (linear, logistic, etc.) may be
problematic.

– Real-time. For the model to be able to conduct real-
time QoE prediction, monitoring and even controlling,
the computational complexity and storage requirement
have to be acceptable.

– Scalable. As the network and user experience evolves
with time, the model should be able to readily take new
variables, and give relatively accurate results.

VI. APPLICATIONS OF VIDEO QoE ANALYSIS MODELS

In this section, we introduce existing works which leverage
video quality assessment models for video transmission opti-
mization or network control.

A. Cross-Layer Video Transmission Optimization

QoE metrics evaluate the video quality from the users’ per-
spective, which can provide the guideline for MAC/PHY level
optimization. This is especially important for delivering video
over wireless network, constrained by the limited bandwidth
and unstable channel quality. There are two major concerns for
the cross-layer video transmission optimization:

• Reliable QoE prediction model. Given the input of QoS
parameters and external factors, the QoE prediction model
should give reliable results, so that corresponding adapta-
tion actions can be taken to improve user QoE. The process
should be performed online to give real-time feedback.

• Cross-layer timescale difference. At the application level,
the video source adaptation is at the timescale of one
frame or one Group of pictures (GoP), which is much
longer than the link adaptation at the PHY level. Further
more, the channel condition variation is much faster than
the video signal variation. Therefore, the application level
video source adaptation may use the aggregated PHY level
information, while the PHY level link adaptation uses the
relatively coarse application level information.

Cross-layer video transmission optimization is studied in
[158]–[160], using PSNR as the QoE metric. In [161], the
authors propose a classification-based multi-dimensional video
adaptation using the subjective test results, not practical for
online network management. In [162], the authors propose an
APP/MAC/PHY cross-layer video transmission optimization
architecture. An online QoS-QoE mapping is developed to
estimate the lower-bound of QoE value based on the packet
error rate. Then, the QoS-QoE mapping is leveraged by the
PHY level to perform unequal error protection to maximize the
QoE. At the APP level, source rate is adapted based on channel
condition and buffer state. In [163], the authors use slice loss
visibility (SLV) model [115] to estimate the visual importance
of video slices (a frame is divided into multiple slices, each of
which consists of multiple macroblocks). The most important
slices are allocated to the most reliable subbands of the OFDM
channels.

B. QoE-Aware Congestion Control

Congestion control in the conventional TCP protocol, when
applied to video traffic, may lead to long delay due to the
following reasons:

• According to the TCP protocol, a lost packet will be
retransmitted until it is successfully received, resulting in
long delay and therefore poor QoE.

• The Additive Increase Multiplicative Decrease (AIMD)
algorithm leads to fluctuated throughput over time, which
will increase the delay, leading to user dissatisfaction.

• The congestion control is QoS-based while the video is
more user-centric and QoE-based.

In order to design a video-friendly congestion control mech-
anism for the TCP protocol, Media-TCP is proposed in [164],
which optimizes the congestion window size to maximize
the long-term expected QoE. The distortion impact and delay
deadline of each packet are considered, in order to provide
differential services for different packet classes. Media-TCP is
shown to improve the PSNR over the conventional TCP conges-
tion control approaches. While Media-TCP is still QoS-based,
a MOS-based congestion control for multimedia transmission
is proposed in [165]. The MOS value is estimated in real time
by the Microsoft Lync system, based on quantitative measure-
ments such as packet loss, bit errors, packet delay and jitter. The
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QoE-aware congestion window adaptation is then formulated
as a Partially Observable Markov Decision Process (POMDP),
and is solved by the online learning algorithm. Another way
to mitigate the delay problem in video transmission, without
modify the TCP protocol, is to use video-friendly application
protocol such as Dynamic Adaptive Streaming over HTTP
(DASH).

C. Video Transmission Over Wireless Network

Special attention has been paid to video transmission over
wireless network because of two reasons. First, channel condi-
tion in wireless network is ever changing due to noise, interfer-
ence, multipaths and the mobility of user devices. Second and
more importantly, with the growing popularity of smartphones
and tablets, mobile video traffic is expected to be dominant in
the near future. There are two mainstream wireless networks:
licensed cellular networks and unlicensed wireless local area
networks (WLANs). While the cellular system has a central-
ized management, the WLAN, most of which based on IEEE
802.11 standards, operates in a distributed way, sharing the
same spectrum with many other networks or systems without a
centralized interference management. Thus, video transmission
over WLAN is more challenging and attracts more research
interests.

1) Interference Management: Rather than average video
quality, it is found that viewers are sensitive to small regions
of poor quality in the recent past (hysteresis effects) [166],
[167]. Rapid change of channel condition and network through-
put lead to variation in video quality, which contributes to
poor QoE. Different from existing interference management
schemes, which often target at reducing the interference power,
in [168], the authors propose an interference shaping scheme,
which spreads the received interference power in time to
“smooth” the burstiness of interference. Though prioritizing
real-time video traffic over best effort traffic, it is shown that
the QoE improvement (quantified by MS-SSIM index) for the
video users only leads to negligible decrease in QoE for best
effort users (quantified by Weber-Fechner Law (WFL)-based
web QoE modeling [169], [170]).

2) Admission Control: Admission control, or access con-
trol, of the IEEE 802.11 WLAN is generally contention based.
To cater for different traffic types (real-time and non real-
time), it is proposed to prioritize the video traffic, or split the
contention time into real-time and non real-time traffic [171]. In
[172], the authors use Pseudo-Subjective Quality Assessment
PSQA as the QoE metric, and propose a QoE-aware real-time
admission control mechanism to manage the network access
of multiple users. In [173], the authors consider the reverse
problem where a user has multiple network to choose from.
Given the information provided by the access points (AP), the
user estimates the overall QoE (represented by PSQA [174]) of
the APs’ existing users and chooses the AP with lower load.

3) Resource Allocation: Resource allocation concerns
about how to allocate frequency, transmission time, or
bandwidth to multiple users when a centralized scheduling is
possible. In [175], a channel allocation scheme is proposed
for cognitive radio (CR) network. The CR base station will

allocate available channels to secondary users based on
their QoE expectations. In [176], [177], the system adapts
video configurations through transcoding to meet resource
constraints, aiming to have the best possible quality (PSNR).

4) Multicast Rate Selection: In [178], the authors design
a video multicast mechanism for multirate WLANs. The hi-
erarchical video coders of the H.264 are combined with the
multicast data rate selection: users with poor channel condition
(low data rate) will receive only the Base Layer of the encoded
video, while users with good channel condition (high data rate)
will receive both the Base Layer and the Enhancement Layers.
The mechanism is extended for compatibility with IEEE 802.11
standards in [179].

D. QoE-Aware Video Streaming

HTTP-based video streaming protocols have been developed
to cater for video traffic. The representative protocols include
HTTP Live Streaming (HLS) protocol and Dynamic Adaptive
Streaming over HTTP (DASH), also known as MPEG-DASH.
A video is divided into chunks of the same time duration, and
each chunk is available in multiple quality levels (with different
encoding bitrates). During the video session, the player can
switch between video streams of the same video content but
different bitrates. For instance, if the buffer is nearly empty,
the player can select a low bitrate to quickly fill up the buffer
to avoid interruption. Given the choice of different quality
video streams, the remain issue is the streaming strategy,
which specifies how to choose the “right” quality for each
video chunk, in order to maximize QoE, subject to network
conditions and buffer size. The intuition to achieve better
QoE is to get higher quality, less frequent quality switch, and
avoid video “freezing” (rebuffer). Single user adaptive video
streaming is considered in [180], [181]. In [180], the wireless
channel prediction information is assumed to be available to the
video streaming application, which schedules the video chunks
and chooses their quality at each time slot. The problem is
formulated as an optimization problem to maximize quality
and minimize rebuffering time. In [181], the number of quality
switches is added in the utility function, and Markov Decision
Process(MDP) is used to solve the optimization problem. Three
MDP approaches are proposed, based on online or offline
network bandwidth statistics. Multi-user adaptive video stream-
ing is considered in [182], [183]. Different from single user
scenario, multi-user scenario has to consider not only efficiency
but also fairness among multiple users.

E. Media Player Buffer Design

The design of media player buffer is of great importance,
since the rebuffering event has a major influence on user QoE.
The buffer size will affect the startup delay and the rebuffering
time. If the buffer size is large, the startup delay will be longer
because more data has to be downloaded before the player
starts playing. Nevertheless, during the playing state, fewer
rebuffering events may happen, vice versa. In addition, it is
found in [149] that most of the downloaded data in the buffer
is useless because many users quit before the video completes.
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This results in a huge waste of the bandwidth both for the Inter-
net Service Providers (ISP) and the Content Delivery Network
(CDN) operators. Predicting the fraction of videos that may be
watched by the viewer will be a great help to avoid transferring
excessive data.

VII. FUTURE DIRECTION

In this section, we present future directions of QoE-oriented
video quality assessment.

A. Development of Data-Driven QoE Research

Data-driven QoE analysis is still at its infancy, and there is
still great room for development.

• New metric selection. New metrics for representing QoE,
QoS and external factors may come up as the network
and the user expectations change with time. The selected
QoE metrics should be a good indicator of user experience
or engagement, and easy to track and monitor in real-
time. Other aspects of user QoE are also interesting. For
example, interactivity can be reflected by user behaviors
such as pause, fast-forward and rewind. With abundant
QoS metrics and external factors, it should be verified
which QoS metrics and external factors have a significant
impact on user QoE.

• In-depth user expectation understanding. Just as most
objective quality models are designed based on HVS,
theories on user expectation of Internet video service may
be further advanced, for example, the user patience for
waiting a video to start or restart; the user viewing habits
at different time of a day or different days of a week.

• Analysis tool development. Many advanced analysis tools
can be leveraged to give a more accurate QoE prediction.
For example, deep learning algorithms can help extract
important QoS and external factors that contribute to user
QoE; better regression models can characterize complex
QoS-QoE relationship.

• Early-quitter phenomenon analysis. A large number of
viewers will first “skim” a few number of videos before
devoting to watching a specific one or simply quit the
website. The early-quitters may exhibit different behaviors
from other viewers, e.g., their QoE may be more sensitive
towards the video content (e.g., popularity), but less sensi-
tive towards some QoS metrics (due to small QoS changes
within a very short time). Other interesting observations
also deserve further investigations.

• Database establishment. As consumer data is often hard
to access and time-consuming to collect, a database that
is available to the research community will be of great
boost to the QoE-related research. So far, there is no such
well-established database like the VQEG database and the
LIVE database.

B. QoE-Based Video Transmission Optimization

Most of the previous video transmission optimization is QoS-
oriented. As the goal changes from QoS-oriented to QoE-

oriented, the optimization problem may be quite different.
Though many existing video QoE-related applications have
been discussed in Section VI, there are still more to be explored.
The following may be some potential research directions.

• QoE-aware multi-user video traffic scheduling. This is
especially needed for the scenario where multiple users
share a bottleneck link. Since different users have different
QoE expectations, scheduling can be performed based on
user QoE sensitivity. In this way, higher aggregated user
QoE may be achieved with limited network resources.

• QoE-aware video streaming. Built on the existing adaptive
video streaming protocols (e.g., DASH and HLS), sophis-
ticated streaming strategy (find the optimal quality for
each video chunk) still needs further exploration. Future
solutions must strike a balance between video quality, re-
buffering time and quality switch frequency, while relying
on relatively accurate channel capacity estimation. In the
multi-user case, fairness is also a concern.

• QoE-aware network management. Once QoE degradation
is detected, first and foremost, the causes should be identi-
fied (possibly through the QoE prediction model). If the
cause is network-related, ISP and CDN operators may
take corresponding actions. If the cause is due to external
factors, there is no need for ISP and CDN operators
to waste their resources, such as increase bandwidth or
change edge servers. All the management decisions should
be based on a comprehensive understanding of the QoS-
QoE relationship.

• QoE-aware traffic prioritization. Video traffic often has
larger packet size than other traffic, and the user patience
for video service delay is often less than that for other ser-
vices. Traffic prioritization based on different definitions
of user QoE towards different services will be a matter of
concern for future research directions.

C. QoE Evaluation in Emerging Technologies

1) 3D Video: There have been a huge number of research
works on perceptual quality of 2D video, while the works
on 3D video QoE are rather limited. The evaluation of 3D
video QoE is challenging because additional factors such as
depth perception, comfort levels and naturalness, have to be
considered. There are two mainstream coding schemes for 3D
video: Scalable Video Coding (SVC) and Multi-view Video
Coding (MVC), see Table II. SVC is simulcast coding, where
views are independently encoded with different SNR, temporal
or spatial scalability. MVC exploits inter-view correlations, and
sequential views are dependently encoded. Apart from differ-
ent coding methods, 3D video can also leverage asymmetric
coding. Asymmetric coding encodes the right and left views at
different PSNR, spatial resolution or frame rate, being able to
reduce the overall bitrate and required bandwidth for transmis-
sion. The performance of symmetric coding and asymmetric
coding is compared in [184]–[186] via subjective test, based
on which efficient asymmetric video encoding approaches are
proposed. The influence of packet losses on the QoE of 3D
video is studied in [187] using subjective test. The relationship
between the DMOS results and the PSNR is characterized by a
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symmetrical logistic function. The future direction for 3D video
QoE evaluation may be a study of the combination of scalable
stereo coding, multi-view video coding and asymmetric coding.

2) Interactive Video: Interactive video services, or audio-
visual communication services, include videotelephony, video
conferencing, and online gaming. Unlike QoE metrics for
conventional video services, in the interactive video services,
interactivity measurement is of great importance, and should
be incorporated in the QoE assessment. In [188], a conceptual
framework is proposed to model, measure and evaluate QoE in
the distributed interactive multimedia environments. In partic-
ular, cognitive perceptions (such as telepresence and perceived
technology acceptance) and behavioral consequences (such as
performance gains and technology adoption) are incorporated
in the QoE metrics. A novel test methodology for QoE eval-
uation in the interactive video services is proposed in [189].
Conversational interactivity and perceived social presence are
incorporated in the QoE metrics. Social presence is the “degree
of salience of the other person in the (mediated) interaction
and the consequent salience of the interpersonal relationships”
[190]. An objective quality model for voice and video over
IP (VVoIP) is built in [191], using network bandwidth, delay,
jitter and loss to predict QoE. However, there is a lack of
consideration for interactivity.

3) Ultra Definition Video: Ultra-high definition television
(UHDTV) is standardized in the ITU-R Recommendation
BT.2020 [192], aiming at providing users with advanced view-
ing experience beyond high definition TV. Various works have
compared the performance of two common compression meth-
ods for UHDTV: High Efficiency Video Coding (HEVC) and
H.264/MPEG-4 Part 10 or AVC (Advanced Video Coding). The
results show that the HEVC generally outperforms the AVC,
achieving higher MOS scores [193], [194] and higher PSNR
[195]. However, there is a lack of study on understanding the
human perception towards ultra definition video, and building
the models to characterize the QoS-QoE relationship for ultra
definition video.

4) New Transmission Network: With the rapid development
of network technologies, it is desirable to evaluate the QoE
of video transmission over different networks, such as mobile
network, sensor network and vehicular network.

• Mobile network. The popularization of the smartphone has
made the traffic of mobile media increase dramatically.
The mobile video is characterized by its usage in dynamic
and heterogeneous environment. According to the study
of mobile TV in [196], the subjective test results in real
contexts (e.g., wait in the train station, kill time in cafe or
transit by bus) are different from those in the controlled
lab. Therefore, it is proposed to evaluate QoE of mobile
video in a Living Lab setting, where the viewers watch the
pre-defined videos and perform evaluation tasks on mobile
devices in real-life scenarios [197], [198].

• Sensor network. Wireless Multimedia Sensor Network
(WMSN) refers to the sensor network that is able to
retrieve, process, store and fuse multimedia information
from the physical world [199]. WMSN can be applied for
video surveillance, traffic control system, environmental

monitoring and so on. However, WMSN faces challenges
of resource constraints, channel capacity variation, video
processing complexity as well as network management.
QoS-provisioning system design for the WMSN has been
widely explored [200], [201], but there is a lack of work
on the QoE evaluation of such systems.

• Vehicular network. Vehicular communications include
vehicle-to-vehicle, vehicle-to-infrastructure and vehicle-
to-roadside wireless communications. Video transmission
over vehicular networks is studied in [202]–[204], using
PSNR or packet loss rate as evaluation metrics.

D. QoE-Based Internet Video Economics

The success of the advertisement-supported or subscription-
supported revenue models is the major driven force for the fast
development of Internet video. Improving user QoE is essential
to maintain such revenue models. Therefore, creating a QoE-
based economic analysis framework for Internet video will be
of great interest.

Fig. 27 shows the general architecture of an Internet video
transmission network. Video files are initially generated by the
video content providers; then distributed by the Content Deliv-
ery Networks (CDN), often chosen by the content providers.
After that, the video files are transmitted via wired or wireless
network provided by the Internet Service Providers (ISP); and
finally displayed on end users’ devices by the media player. We
can see that there are four major participants in the Internet
video service ecosystem:

• Video Content Provider, e.g., YouTube, Netflix, and Com-
cast.

• Content Delivery Network (CDN) Operator, e.g., Akamai
Technologies in the U.S. [205], ChinaCache in China, and
StreamZilla in the Europe. CDN consists of large numbers
of servers distributed across multiple ISPs’ data centers
close to the end users. CDN transports the videos from the
content provider to servers at the “edge” of the internet,
where the videos are cached and delivered to the end users
with high quality.

• Internet Service Providers (ISP), e.g., AT & T, Vodafone,
and China Telecom. There are two major types of ISP:
fixed-line operators who provide wired network access,
and mobile network operators who provide wireless net-
work access. Typical wireless networks include cellular
network and WLAN (Wi-Fi); typical wired networks in-
clude cable, DSL and fiber.

• Media Player Designer, e.g., Adobe which designed
Adobe Flash Player, Microsoft which designed Windows
Media Player, and Apple which designed QuickTime.

The economic ties between these participants are as follows.
The video content providers will choose and pay the CDN op-
erators for delivering their videos. The CDN operators have to
pay the ISPs for hosting CDN servers in the ISPs’ data centers.
Though most media players are free of charge, they benefit the
designers by completing their products or services. Improving
user QoE is of common interest to all participants, but different
participants have different control parameters. For example,
CDN operators can select the CDN servers; ISPs can decide
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Fig. 27. Video delivery network.

the bandwidth. On the one hand, each participant can maximize
his individual utility by choosing his own control strategy; on
the other hand, all or some participants can cooperate with each
other to maximize end user QoE or total utility. Future research
on either direction is promising.

VIII. CONCLUSION

Video quality assessment has evolved from system-centric
QoS-oriented to user-centric QoE-oriented. With the ever-
increasing user demand for video service, developing reliable
models that can monitor, predict and even control QoE is of
great importance to the service providers and network opera-
tors. In this tutorial, we give a comprehensive review of the
evolution of QoE-based video quality assessment methods: first
the subjective test, then the objective quality model, and finally
the data-driven analysis. We give detailed description of the
state of art of each method. Subjective test is a direct way of
measuring QoE, but has a great many of limitations. Objective
quality model indirectly predicts QoE through objective met-
rics, but it relies heavily on the subjective test results. With
growing popularity of video streaming over the Internet, large-
scale data-driven QoE models have emerged, based on new
QoE metrics and data mining techniques. We believe that this
will be the research frontier, with many issues to be explored
and resolved. We also identify other future research directions,
such as QoE-based video transmission optimization and QoE-
based Internet video economics.
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